Skip to main content

Advertisement

Log in

Relationship of fish and macroinvertebrate assemblages to environmental factors: implications for community concordance

  • Primary research paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Community concordance describes similarity in distributions and abundances of organisms from different taxonomic groups across a region of interest, with highly concordant communities assumed to respond similarly to major environmental gradients, including anthropogenic stressors. While few studies have explicitly tested for concordance among stream-dwelling organisms, it frequently is assumed that both macroinvertebrates and fish respond in concert to environmental factors, an assumption that has implications for their management. We investigated concordance among fish and macroinvertebrates from tributaries of two catchments in southeastern Michigan having varied landscape characteristics. Classifications of fish and macroinvertebrate assemblages resulted in groups distinguished by differences in taxonomic characteristics, functional traits, and stressor tolerance of their respective dominant taxa. Biological groups were associated with principal landscape gradients of the study region, which ranged from forests and wetlands on coarse surficial geology to agricultural lands on finer, more impervious surficial geology. Measures of stream habitat indicated more stable stream flows and greater heterogeneity of conditions at site groups with catchments comprising forests and wetlands on the coarsest geology, but did not distinguish well among remaining site groups, suggesting that habitat degradation may not be the driving mechanism leading to differences in groups. Despite broadly similar interpretations of relationships of site groups with landscape characteristics for both fish and macroinvertebrates, examination of site representation within groups indicated weak community concordance. Our results suggest that explicit responses of fish and macroinvertebrates to landscape factors vary, due to potential differences in their susceptibility to controls or to differences in the scale at which landscape factors influence these organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allan, J. D., 2004. Landscapes and riverscapes: the influence of land use on stream ecosystems. Annual Review of Ecology, Evolution, and Systematics 35: 257–284.

    Article  Google Scholar 

  • Allen, A. P., T. R. Whittier, D. P. Larsen, P. R. Kaufmann, R. J. O’Connor, R. M. Hughes, R. S. Stemberger, S. S. Dixit, R. O. Brinkhurst, A. T. Herlihy & S. G. Paulsen, 1999. Concordance of taxonomic composition patterns across multiple lake assemblages: effects of scale, body size, and land use. Canadian Journal of Fisheries and Aquatic Sciences 56: 2029–2040.

    Article  Google Scholar 

  • Barbour, M. T., B. D. Gerritsen, B. D. Snyder & J. B. Stribling, 1999. Rapid Bioassessment Protocols for use in Streams and Wadeable Rives: Periphyton, Benthic Macroinvertebrates and Fish. Second Edition. EPA 841-8-99-002. US Environmental Protection Agency, Office of Water, Washington D.C.

    Google Scholar 

  • Belbin, L., 1992. PATN (Pattern Analysis Package) Technical Reference. Commonwealth Scientific and Industrial Research Organization, Division of Wildlife and Ecology, Canberra, Australia.

    Google Scholar 

  • Belbin, L. & C. McDonald, 1993. Comparing three classification strategies for use in ecology. Journal of Vegetation Science 4: 341–348.

    Article  Google Scholar 

  • Burcher, C. L., H. M. Valett & E. F. Benfield, 2007. The land-cover cascade: relationships coupling land and water. Ecology 88: 228–242.

    Article  PubMed  CAS  Google Scholar 

  • Cifaldi, R. L., J. D. Allan, J. D. Duh & D. G. Brown, 2004. Spatial patterns in land cover of exurbanizing watersheds in southeastern Michigan. Landscape and Urban Planning 66: 107–123.

    Article  Google Scholar 

  • Diana, M., J. D. Allan & D. M. Infante, 2006. The influence of physical habitat and land use on stream fish assemblages in southeast Michigan. In Hughes, R. M., L. Wang & P. W. Seelbach (eds), Influences of Landscapes on Stream Habitats and Biological Assemblages. American Fisheries Society, Bethesda, Maryland.

    Google Scholar 

  • Faith, D. P., 1990. Benthic macroinvertebrates in biological surveillance: Monte Carlo significance tests on functional groups’ responses to environmental gradients. Environmental Monitoring and Assessment 14: 247–264.

    Article  Google Scholar 

  • Faith, D. P. & R. H. Norris, 1989. Correlation of environmental variables with patterns of distribution and abundance of common and rare freshwater macroinvertebrates. Biological Conservation 50: 77–98.

    Article  Google Scholar 

  • Faith, D. P., P. R. Minchin & L. Belbin, 1987. Compositional dissimilarity as a robust measure of ecological distance. Vegetatio 69: 57–68.

    Article  Google Scholar 

  • Farrand, W. R. & D. L. Bell, 1982. Quaternary Geology of Southern Michigan (map). Department of Geological Sciences, University of Michigan, Ann Arbor, Michigan.

    Google Scholar 

  • Fausch, K. D., C. E. Torgersen, C. V. Baxter & H. W. Li, 2002. Landscapes to riverscapes: bridging the gap between research and conservation of stream fishes. BioScience 52: 483–498.

    Article  Google Scholar 

  • Fitzpatrick, F. A., B. C. Scudder, B. N. Lenz & D. J. Sullivan, 2001. Effects of multi-scale environmental characteristics on agricultural stream biota in eastern Wisconsin. Journal of the American Water Resources Association 37: 1489–1507.

    Article  Google Scholar 

  • Goldstein, R. M. & M. R. Meador, 2004. Comparisons of fish species traits from small streams to large rivers. Transactions of the American Fisheries Society 133: 971–983.

    Article  Google Scholar 

  • Hawkes, C. L., D. L. Miller & W. G. Layher, 1986. Fish ecoregions of Kansas: stream fish assemblage patterns and associated environmental correlates. Environmental Biology of Fishes 17: 267–279.

    Article  Google Scholar 

  • Hawkins, C. P., R. H. Norris, J. N. Hogue & J. W. Feminella, 2000. Development and use of predictive models for assessing the biological integrity of streams. Ecological Applications 10: 1456–1477.

    Article  Google Scholar 

  • Hilsenhoff, W. L., 1982. Using a biotic index to evaluate water quality of streams. Technical Bulletin Number 132. Wisconsin Department of Natural Resources, Madison, Wisconsin.

  • Infante, D. M., M. J. Wiley & P. W. Seelbach, 2006. Relationships among channel shape, catchment characteristics, and fish. In Hughes, R. M., L. Wang & P. W. Seelbach (eds), Influences of Landscapes on Stream Habitats and Biological Assemblages. American Fisheries Society, Bethesda, Maryland.

    Google Scholar 

  • Johnson, R. K. & W. Goedkoop, 2002. Littoral macroinvertebrate communities: spatial scale and ecological relationships. Freshwater Biology 47: 1840–1854.

    Article  Google Scholar 

  • Johnson, L. B., C. Richards, G. E. Host & J. W. Arthur, 1997. Landscape influences on water chemistry in Midwestern stream ecosystems. Freshwater Biology 37: 193–208.

    Article  CAS  Google Scholar 

  • Karr, J. R., 1991. Biological integrity: a long-neglected aspect of water resource management. Ecological Applications 1: 66–84.

    Article  Google Scholar 

  • Kilgour, B. W. & D. R. Barton, 1999. Associations between stream fish and benthos across environmental gradients in southern Ontario, Canada. Freshwater Biology 41: 553–566.

    Article  Google Scholar 

  • King, R. S., M. E. Baker, D. F. Whigham, D. E. Weller, T. E. Jordan, P. F. Kazyak & M. K. Hurd, 2005. Spatial considerations for linking watershed land cover to ecological indicators in streams. Ecological Applications 15: 137–153.

    Article  Google Scholar 

  • Lammert, M. & J. D. Allan, 1999. Assessing biotic integrity of streams: effects of scale in measuring the influence of land use/cover and habitat structure on fish and macroinvertebrates. Environmental Management 23: 257–270.

    Article  PubMed  Google Scholar 

  • Lance, G. N. & W. T. Williams, 1967. A general theory of classificatory sorting strategies: I. Hierarchical Systems. The Computer Journal 9: 373–380.

    Google Scholar 

  • Legendre, P. & V. Legendre, 1984. Postglacial dispersal of freshwater fishes in Quebec Peninsula. Canadian Journal of Fisheries and Aquatic Sciences 41: 1781–1802.

    Article  Google Scholar 

  • Lenat, D. R., 1984. Agriculture and stream water quality – a biological evaluation of erosion control practices. Environmental Management 8: 333–343.

    Article  Google Scholar 

  • Linke, S., R. H. Norris, D. P. Faith & D. Stockwell, 2005. ANNA: a new prediction method for bioassessment programs. Freshwater Biology 50: 147–158.

    Article  Google Scholar 

  • Lyons, J., 1992. Using the index of biotic integrity (IBI) to measure environmental quality in warmwater streams of Wisconsin. US Department of Agriculture, Forest Service, North Central Forest Experiment Station, General Technical Report NC-149. St. Paul, Minnesota.

  • Lyons, J., R. R. Piette & K. W. Niermeyer, 2001. Development, validation, and application of a fish-based index of biotic integrity for Wisconsin’s large warmwater rivers. Transactions of the American Fisheries Society 130: 1077–1094.

    Article  Google Scholar 

  • Magalhaes, M. F., D. C. Batalha & M. J. Collares-Pereira, 2002. Gradients in stream fish assemblages across a Mediterranean landscape: contributions of environmental factors and spatial structure. Freshwater Biology 47: 1015–1031.

    Article  Google Scholar 

  • McCune, B. & J. Mefford, 1997. PC-ORD. Multivariate Analysis of Ecological Data. Mjm Software Design, Gleneden Beach, Oregon.

    Google Scholar 

  • Meador, M. R. & R. M. Goldstein, 2003. Assessing water quality at large geographic scales: relations among land use, water physicochemistry, riparian condition, and fish community structure. Environmental Management 31: 504–517.

    Article  PubMed  Google Scholar 

  • Michigan Department of Environmental Quality, 1997. Qualitative biological and habitat survey protocols for wadeable streams and rivers. MI/DEQ/SWQ-96/068. Surface Water Quality Division. Great Lakes Environmental Assessment Section. Staff Report.

  • Michigan Resource Information System (MIRIS), 1978. Michigan Land Use (geographic information system maps). Michigan Department of Natural Resources, Lansing, Michigan.

    Google Scholar 

  • Norris, R. H. & A. Georges, 1993. Analysis and interpretation of benthic macroinvertebrate surveys. In Rosenberg, D. M. & V. H. Resh (eds), Freshwater Biomonitoring and Benthic Macroinvertebrates. Chapman and Hall, New York.

    Google Scholar 

  • Norris, R. H. & C. P. Hawkins, 2000. Monitoring river health. Hydrobiologia 435: 5–17.

    Article  Google Scholar 

  • Olden, J. A. & N. L. Poff, 2004. Ecological processes driving biotic homogenization: testing a mechanistic model using fish faunas. Ecology 85: 1867–1875.

    Article  Google Scholar 

  • Osborne, L. L. & M. J. Wiley, 1988. Empirical relationship between land-use cover and stream water quality in an agricultural watershed. Journal of Environmental Management 26: 9–27.

    Google Scholar 

  • Paavola, R., T. Muotka, R. Virtanen, J. Heino & P. Kreivi, 2003. Are biological classifications of headwater streams concordant across multiple taxonomic groups? Freshwater Biology 48: 1912–1923.

    Article  Google Scholar 

  • Paavola, R., T. Muotka, R. Virtanen, J. Heino, D. Jackson & A. Maki-Petays, 2006. Spatial scale affects community concordance among fishes, benthic macroinvertebrates, and bryophytes in streams. Ecological Applications 16: 368–379.

    Article  PubMed  Google Scholar 

  • Paszkowski, C. A. & W. M. Tonn, 2000. Community concordance between the fish and aquatic birds of lakes in northern Alberta, Canada: the relative importance of environmental and biotic factors. Freshwater Biology 43: 421–437.

    Article  Google Scholar 

  • Podani, J., 1997. On the sensitivity of ordination and classification methods to variation in the input order of data. Journal of Vegetation Science 8: 153–156.

    Article  Google Scholar 

  • Poff, N. L., 1997. Landscape filters and species traits: towards mechanistic understanding and prediction in stream ecology. Journal of the North American Benthological Society 16: 391–409.

    Article  Google Scholar 

  • Poff, N. L. & J. D. Allan, 1995. Functional organization of stream fish assemblages in relation to hydrologic variability. Ecology 76: 606–627.

    Article  Google Scholar 

  • Quinn, J. M., 2000. Effects of pastoral development. In Collier, K. J. & M. J. Winterbourn (eds), New Zealand Stream Invertebrates: Ecology and Implications for Management. Caxton Press, Christchurch, New Zealand.

    Google Scholar 

  • Quist, M. C., F. J. Rahel & W. A. Hubert, 2005. Hierarchical faunal filters: an approach to assessing effects of habitat and nonnative species on native fishes. Ecology of Freshwater Fish 14: 24–39.

    Article  Google Scholar 

  • Richards, C., L. B. Johnson & G. E. Host, 1996. Landscape-scale influences on stream habitats and biota. Canadian Journal of Fisheries and Aquatic Sciences 53: 295–311.

    Article  Google Scholar 

  • Rios, S. L. & R. C. Bailey, 2006. Relationship between riparian vegetation and stream benthic communities at three spatial scales. Hydrobiologia 553: 153–160.

    Article  Google Scholar 

  • Roth, N. E., J. D. Allan & D. L. Erickson, 1996. Landscape influences on stream biotic integrity assessed at multiple spatial scales. Landscape Ecology 11: 141–156.

    Article  Google Scholar 

  • Schlosser, I. J., 1995. Critical landscape attributes that influence fish population dynamics in headwater streams. Hydrobiologia 303: 71–81.

    Google Scholar 

  • Scott, M. C. & G. S. Helfman, 2001. Native invasions, homogenization, and the mismeasure of integrity of fish assemblages. Fisheries 26: 6–15.

    Article  Google Scholar 

  • Sneldor, T. H. & B. J. F. Biggs, 2002. Multiscale river environment classification for water resources management. Journal of the American Water Resources Association 38: 1225–1239.

    Article  Google Scholar 

  • Sponseller, R. A., E. F. Benfield & H. M. Valett, 2001. Relationships between land use, spatial scale and stream macroinvertebrate communities. Freshwater Biology 46: 1409–1424.

    Article  Google Scholar 

  • Stewart, J. S., L. Wang, J. Lyons, J. A. Horwatich & R. Bannerman, 2001. Influences of watershed, riparian-corridor, and reach-scale characteristics on aquatic biota in agricultural watersheds. Journal of the American Water Resources Association 37: 1475–1487.

    Article  Google Scholar 

  • Tonn, W. M., J. J. Magnuson, M. Rask & J. Toivonen, 1990. Intercontinental comparison of small-lake fish assemblages: the balance between local and regional processes. The American Naturalist 136: 345–375.

    Article  Google Scholar 

  • Townsend, C. R., S. Doledec, R. H. Norris, K. Peacock & C. J. Arbuckle, 2003. The influence of scale and geography on relationships between stream community composition and landscape variables: description and prediction. Freshwater Biology 48: 768–785.

    Article  Google Scholar 

  • Van Sickle, J. & R. M. Hughes, 2000. Classification strengths of ecoregions, catchments, and geographic clusters for aquatic vertebrates in Oregon. Journal of the North American Benthological Society 19: 370–384.

    Article  Google Scholar 

  • Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell & C. E. Cushing, 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37: 130–137.

    Article  Google Scholar 

  • Vieira, N. K. M., N. L. Poff, D. M. Carlisle, S. R. Moulton, M. L. Koski & B. C. Kondratieff, 2006. A database of lotic invertebrate traits for North America: U.S. Geological Survey Data Series 187. U.S. Department of the Interior, Reston, Virginia (Available from: http://pubs.usgs.gov/ds/ds187/).

  • Walters, D. M., D. S. Leigh & A. B. Bearden, 2003. Urbanization, sedimentation, and the homogenization of fish assemblages in the Etowah River Basin, USA. Hydrobiologia 494: 5–10.

    Article  Google Scholar 

  • Wang, L., J. Lyons, P. Kanehl & R. Gatti, 1997. Influences of watershed land use on habitat quality and biotic integrity in Wisconsin streams. Fisheries 22: 6–12.

    Article  Google Scholar 

  • Wang, L., J. Lyons & P. Kanehl, 2001. Impacts of urbanization on stream habitat and fish across multiple spatial scales. Environmental Management 28: 255–266.

    Article  PubMed  CAS  Google Scholar 

  • Wang, L., J. Lyons, P. Rasmussen, P. Seelbach, T. Simon, M. Wiley, P. Kanehl, E. Baker, S. Niemela & P. M. Stewart, 2003. Watershed, reach and riparian influences on stream fish assemblages in the Northern Lakes and Forest Ecoregion, USA. Canadian Journal of Fisheries and Aquatic Science 60: 491–505.

    Article  Google Scholar 

  • Whittier, T. R., R. M. Hughes & D. P. Larsen, 1988. Correspondence between ecoregions and spatial patterns in stream ecosystems in Oregon. Canadian Journal of Fisheries and Aquatic Sciences 45: 1264–1278.

    Google Scholar 

  • Wood, M. G. S., 2002. The influence of land cover and in-stream habitat on the biological condition of streams in southeastern Michigan. M.S. Thesis, University of Michigan, Ann Arbor, Michigan.

  • Wright, J. F., 1995. Development and use of a system for predicting the macroinvertebrate fauna in flowing waters. Australian Journal of Ecology 20: 181–197.

    Article  Google Scholar 

  • Yoder, C. O. & E. T. Rankin, 2004. Trends in biological integrity, biodiversity and aquatic habitat in the Eastern Corn Belt Plains Ecoregion: Implications for the protection and restoration of streams in the St. Joseph River Watershed. Executive Summary for the Midwest Biodiversity Institute. Aquatic Life Use Fact Sheet 1-MBI-03. Columbus, Ohio.

Download references

Acknowledgments

We wish to thank the many individuals involved with data collection and processing including Matt Diana, Janelle Francis, Diana Karwan, Eric Sokol, Jo Wilhelm, and Mahya Wood. This research was supported by a grant from the National Science Foundation’s Water and Watersheds Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dana M. Infante.

Additional information

Handling editor: Robert Bailey

Rights and permissions

Reprints and permissions

About this article

Cite this article

Infante, D.M., David Allan, J., Linke, S. et al. Relationship of fish and macroinvertebrate assemblages to environmental factors: implications for community concordance. Hydrobiologia 623, 87–103 (2009). https://doi.org/10.1007/s10750-008-9650-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-008-9650-3

Keywords

Navigation