Skip to main content
Log in

Genetic differentiation between populations of swimming crab Portunus trituberculatus along the coastal waters of the East China Sea

  • Primary research paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Portunus trituberculatus is a commercially important species widely spread in the East China Sea. Intraspecific variation of the mitochondrial DNA cytochrome oxidase subunit I (mtDNA COI) gene was investigated in 213 individuals from six localities (Changjiang Estuary, Shengsi Islands, Zhoushan Islands, Dongtou Islands, Dinghai Bay, and Quanzhou Bay) ranging from north (31°21′N) to south (24°55′N) coastal waters of the East China Sea. Overall, a total of 27 mtDNA haplotypes and 21 variable sites were detected in the 787 bp segment of COI gene. Analysis of mtDNA COI sequence data revealed that crabs from the six localities were characterized by moderately high haplotypic diversity (h = 0.787 ± 0.026), while sequence divergence values between haplotypes were relatively low (π = 0.00241 ± 0.00098). Each population was characterized by a single most frequent haplotype, shared among all six localities, and a small number of rare ones, typically present in only one or two individuals and representative of a specific population. However, neither the neighbor-joining tree nor the minimum spanning network (MSN) based on the haplotype data exhibited geographical patterns of the six populations. Mismatch distribution analysis of P. trituberculatus individuals sampled from the six localities suggested that sudden population expansion might have occurred in CJ and SS population that might be consistent with over-exploitation of the swimming crab. Analysis of molecular variance (AMOVA) and F ST statistics showed that significant genetic differentiation existed among the SS, ZS, DT, DH, and QZ populations, suggesting that gene flow might be reduced, even between the geographically close sites, despite the high potential of dispersal. The possible causes of the observed genetic heterogeneity among the P. trituberculatus populations and the potential applications of the mtDNA COI marker in the artificial breeding and fisheries management are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Avise, J. C., 1987. Identification and interpretation of mitochondrial DNA stocks in marine species. In Kumpf, H. (ed.), Proceedings of the Stock Identification Workshop. U.S. Department of Commerce NOAA Technical Memorandum NMFS-SEFC-199: 105–136.

  • Avise, J. C., 2000. Phylogeography. Harvard University Press, London: 447 pp.

  • Azuma, N., Y. Kunihiro, J. Sasaki, E. Mihara, Y. Mihara, T. Yasunaga, D. H. Jin & S. Abe, 2008. Genetic variation and population structure of hair crab (Erimacrus isenbeckii) in Japan inferred from mitochondrial DNA sequence analysis. Marine Biotechnology 10: 39–48.

    Article  PubMed  CAS  Google Scholar 

  • Cassone, B. J. & E. G. Boulding, 2006. Genetic structure and phylogeography of the lined shore crab, Pachygrapsus crassipes, along the northeastern and western Pacificcoasts. Marine Biology 149: 213–226.

    Article  Google Scholar 

  • Cho, E. S., C. G. Jung, S. G. Sohn, C. W. Kim & S. J. Han, 2007. Population genetic structure of the ark shell Scapharca broughtonii schrenck from Korea, China, and Russia based on COI gene sequences. Marine Biotechnology 9: 203–216.

    Article  PubMed  CAS  Google Scholar 

  • Dai, A. Y., 1977. Primary investigation on the fishery biology of the Portunus trituberculatus. Marine Fisheries 25: 136–141 (in Chinese).

    Google Scholar 

  • Dai, A. Y., S. L. Yang & Y. Z. Song, 1986. Marine crabs in China Sea. Marine Publishing Company, Beijing: 194–196 (in Chinese).

    Google Scholar 

  • Excoffier, L., P. E. Smouse & J. M. Quattro, 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131: 491–497.

    Google Scholar 

  • Excoffier, L. & P. E. Smouse, 1994. Using allele frequencies and geographic subdivision to reconstruct gene trees within a species: molecular variance parsimony. Genetics 136: 343–359.

    PubMed  CAS  Google Scholar 

  • Excoffier, L., G. Laval & S. Schneider, 2005. Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online 1: 47–50.

    CAS  Google Scholar 

  • Felsenstein, J., 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791.

    Article  Google Scholar 

  • Fu, Y. X., 1997. Statistical tests of neutrality against population growth, hitchhiking and background selection. Genetics 147: 915–925.

    PubMed  CAS  Google Scholar 

  • Gao, B. Q., P. Liu, J. Li & F. Y. Dai, 2007. Isozyme polymorphism in Portunus trituberculatus from wild population. Journal of Fisheries of China 31: 1–6 (in Chinese).

    CAS  Google Scholar 

  • Harpending, H., 1994. Signature of ancient population growth in a low-resolution mitochondrial DNA mismatch distribution. Human Biology 66: 591–600.

    CAS  Google Scholar 

  • Harpending, H., S. T. Sherry, A. R. Rogers & M. Stoneking, 1993. The genetic structure of ancient human populations. Current Anthropology 34: 483–496.

    Article  Google Scholar 

  • Hedgecock, D., 1986. Is gene flow from pelagic larval dispersal important in the adaptation and evolution of marine invertebrates? Bulletin of Marine Science 39: 550–564.

    Google Scholar 

  • Hedgecock, D., 1994. Temporal and spatial genetic structure of marine animal populations in the California current. California Cooperative Oceanic Fish Invest Reports 35: 73–81.

    Google Scholar 

  • Imai, H., Y. Fujii, J. Karakawa, S. Yamamoto & K. Numachi, 1999. Analysis of the population structure of the swimming crab, Portunus trituberculatus in the coastal waters of Okayama Prefecture, by RFLPs in the whole region of mitochondrial DNA. Fisheries Science 65: 655–656.

    CAS  Google Scholar 

  • Kimura, M., 1980. A simple method for estimating evolutionary rate of base substitution through comparative studies of nucleotide sequence. Journal of Molecular Evolution 16: 111–120.

    Article  PubMed  CAS  Google Scholar 

  • Kumar, S., K. Tamura & M. Nei, 2004. MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Briefings in Bioinformatics 5: 150–163.

    Article  PubMed  CAS  Google Scholar 

  • Lavery, S., C. Moritz & D. R. Fielder, 1996. Indo-Pacific population structure and evolutionary history of the coconut crab Birgus latro. Molecular Ecology 5: 557–570.

    Article  Google Scholar 

  • Li, P. F., P. Liu, J. Li, F. Y. Dai & Y. Y. He, 2007. Biochemical genetic analysis of Portunus trituberculatus in Laizhou Bay. Marine Fisheries Research 28: 90–96 (in Chinese).

    Google Scholar 

  • Lintas, C., J. Hirano & S. Archer, 1998. Genetic variation of the European eel (Anguilla anguilla). Molecular Marine Biology and Biotechnology 7: 263–269.

    PubMed  CAS  Google Scholar 

  • Maes, G. E. & F. A. M. Volckaert, 2002. Clinal genetic variation and isolation by distance in the European eel Anguilla anguilla (L.). Biological Journal of the Linnean Society 77: 509–521.

    Article  Google Scholar 

  • Palumbi, S. R., 1992. Marine speciation on a small planet. Trends in Ecology & Evolution 7: 114–118.

    Article  Google Scholar 

  • Palumbi, S. R., 1994. Genetic divergence, reproductive isolation and marine speciation. Annual Review of Ecology and Systematics 25: 547–572.

    Article  Google Scholar 

  • Perrin, C., S. R. Wing & M. S. Roy, 2004. Effects of hydrographic barriers on population genetic structure of the sea star Coscinasterias muricata (Echinodermata, Asteroidea) in the New Zealand fiords. Molecular Ecology 13: 2183–2195.

    Article  PubMed  CAS  Google Scholar 

  • Rogers, A. R., 1995. Genetic evidence for a Pleistocene population explosion. Evolution 49: 608–615.

    Article  Google Scholar 

  • Rogers, A. R. & H. Harpending, 1992. Population growth makes waves in the distribution of pairwise genetic differences. Molecular Biology Evolution 9: 552–569.

    CAS  Google Scholar 

  • Roman, J. & S. R. Palumbi, 2004. A global invader at home: population structure of the green crab, Carcinus maenas, in Europe. Molecular Ecology 13: 2891–2898.

    Article  PubMed  CAS  Google Scholar 

  • Rozas, J., J. C. Sanchez-DelBarrio, X. Messeguer & R. Rozas, 2003. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19: 2496–2497.

    Article  PubMed  CAS  Google Scholar 

  • Saitou, N. & M. Nei, 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology Evolution 4: 406–425.

    CAS  Google Scholar 

  • Sambrook, J., E. F. Fritsh & T. Maniatis, 1989. Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, New York.

    Google Scholar 

  • Schneider, S. & L. Excoffier, 1999. Estimation of past demographic parameters from the distribution of pairwise differences when mutation rates vary among sites: application to human mitochondrial DNA. Genetics 152: 1079–1089.

    PubMed  CAS  Google Scholar 

  • Shen, J. R. & R.Y. Liu, 1965. Shrimps and Crabs in China. Science Popularization Press, Beijing: 23 pp.

  • Slatkin, M., 1993. Isolation by distance in equilibrium and nonequilibrium populations. Evolution 47: 264–279.

    Article  Google Scholar 

  • Slatkin, M. & R. R. Hudson, 1991. Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics 129: 555–562.

    PubMed  CAS  Google Scholar 

  • Song, H. T., Y. P. Ding & Y. J. Xu, 1989. Population component characteristics and migration distribution of the Portunus trituberculatus in the coast water of Zhejiang Province. Marine Bulletin 8: 66–74 (in Chinese).

    Google Scholar 

  • Sun, Y. M., Y. Yan & J. J. Sun, 1984. Larvae development of the swimming crab Portunus trituberculatus. Journal of Fisheries of China 8: 219–226 (in Chinese).

    Google Scholar 

  • Tajima, F., 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123: 585–595.

    PubMed  CAS  Google Scholar 

  • Tajima, F. & M. Nei, 1984. Estimation of evolutionary distance between nucleotide sequences. Molecular Biology Evolution 1: 269–285.

    CAS  Google Scholar 

  • Tave, D., 1993. Genetics for Fish Hatchery Managers. Van Nostrand Reinhold, New York: 415 pp.

  • Thompson, J. D., D. G. Higgins & J. J. Gibson, 1994. Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Research 22: 4673–4680.

    Article  PubMed  CAS  Google Scholar 

  • Wang, G. L., S. Jin, Z. Li & Y. E. Chen, 2005. Tissue specificity and biochemical genetic analysis of isozyme on cultured Portunus trituberculatus stock. Journal of Oceanography in Taiwan Strait 24: 474–480 (in Chinese).

    Google Scholar 

  • Wirth, T. & L. Bernatchez, 2001. Genetic evidence against panmixia in the European eel. Nature 409: 1037–1040.

    Article  PubMed  CAS  Google Scholar 

  • Wu, C. W., S. C. Yu & Y. L. Lv, 1996. Fishery Techniques of the Swimming Crab Portunus trituberculatus. Shanghai Science and Technology Press, Shanghai: 28–31 (in Chinese).

  • Xue, J. Z., N. S. Du & W. Nai, 1997. The researches on the Portunus trituberculatus in China. The East China Sea 15: 60–64 (in Chinese).

    Google Scholar 

  • Yamauchi, M. M., M. U. Miya & M. Nishida, 2003. Complete mitochondrial DNA sequence of the swimming crab, Portunus trituberculatus (Crustacea: Decapoda: Brachyura). Gene 311: 129–135.

    Article  PubMed  CAS  Google Scholar 

  • Yu, C. G., H. T. Song & G. Z. Yao, 2003. Geographical distribution and faunal analysis of crab resources in the East China Sea. Journal of Zhejiang Ocean University 22: 108–113 (in Chinese).

    Google Scholar 

  • Yu, C. G., H. T. Song & G. Z. Yao, 2004. Assessment of the crab stock biomass in the continental shelf waters of the East China Sea. Journal of Fisheries of China 28: 41–46 (in Chinese).

    Google Scholar 

Download references

Acknowledgments

We would like to express our thanks to all the people in Lianjiang Fisheries and Management Bureau for help in sample collection. This work is supported in part by grants from the Shanghai Leading Academic Discipline Project (T1101), the Shanghai Marine Bio-resources and Environment Innovation Platform Project, and from the Shanghai 908 Project (Synthetical Investigations and Evaluations on Shanghai Coastal Waters) (PJ1-2, ST1/ST2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qianghua Xu.

Additional information

Handling editor: C. Sturmbauer

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Liu, R., Ye, L. et al. Genetic differentiation between populations of swimming crab Portunus trituberculatus along the coastal waters of the East China Sea. Hydrobiologia 618, 125–137 (2009). https://doi.org/10.1007/s10750-008-9570-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-008-9570-2

Keywords

Navigation