Skip to main content
Log in

Dual impact of the flood pulses on the phytoplankton assemblages in a Danubian floodplain lake (Kopački Rit Nature Park, Croatia)

  • Primary research paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

There are several conflicting hypothesis that deal with the influence of flooding in the natural river–floodplain systems. According to the Flood Pulse Concept, the flood pulses are not considered to be a disturbance, while some recent studies have proven that floods can be a disturbance factor of phytoplankton development. In order to test whether flooding acts as a disturbance factor in the shallow Danubian floodplain lake (Lake Sakadaš), phytoplankton dynamics was investigated during two different hydrological years—extremely dry (2003) without flooding and usually flooded (2004). A total of 18 phytoplankton functional groups were established. The sequence of phytoplankton seasonality can be summarized P/D → E (W1, W2) → C/P (only in potamophase) → S2/H1/SN/S1 → W1/W2 → P/D. The canonical correspondence analysis (CCA) demonstrated that the water level was a significant environmental variable in 2004. Due to the higher total biomass of Bacillariophyceae established under potamophase conditions, floodings in the early spring seem to be a stimulating factor for phytoplankton development. On the other hand, the flood pulses in May and June had dilution effects on nutrients, so that a significantly lower phytoplankton biomass was established indicating that flooding pulses can be regarded as a disturbance event. Such conditions supported diatom development (D, P, C species) and prolonged its dominance in the total phytoplankton biomass. A long-lasting Cyanoprokaryota bloom (various filamentous species—S1, S2, SN and H1 representatives) with very high biomass characterized the limnophase (dry conditions) in summer and autumn of both years. In-lake variables (lake morphology, internal loadings of nutrients from sediments, light conditions) seem to be important for the appearance of Cyanoprokaryota bloom. The equilibrium phase was found during the Cyanoprokaryota bloom only in the extremely dry year. This study showed that depending on the time scale occurrence, flood pulses can be a stimulating or a disturbance factor for phytoplankton development in Lake Sakadaš.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Angeler, D. G., M. Alvarez-Cobelas, C. Rojo & S. Sánchez-Carrillo, 2000. The significance of water inputs to plankton biomass and trophic relationships in a semiarid freshwater wetland (central Spain). Journal of Plankton Research 22: 2075–2093.

    Article  Google Scholar 

  • APHA, 1985. American Public Health Association Standard Methods for the Examination of Water and Wastewaters. Washington, DC, USA.

  • Borics, G., I. Grigorszky, S. Szabó & J. Padisák, 2000. Phytoplankton associations in a small hypertrophic fishpond in East Hungary during a change from bottom–up to top–down control. Hydrobiologia 424: 79–90.

    Article  Google Scholar 

  • Butler, J., R. Croome & G. N. Rees, 2007. The composition and importance of the phytoneuston in two floodplain lakes in south-eastern Australia. Hydrobiologia 579: 135–145.

    Article  Google Scholar 

  • Cattaneo, A., G. Galanti, S. Gentinetta & S. Romo, 1998. Epiphytic algae and macroinvertebrates on submerged and floating-leaved macrophytes in an Italian lake. Freshwater Biology 39: 725–740.

    Article  Google Scholar 

  • de Oliveira, M. D. & D. F. Calheiros, 2000. Flood pulse influence on phytoplankton communities of the south Pantanal floodplain, Brazil. Hydrobiologia 427: 101–112.

    Article  Google Scholar 

  • de Tezanos Pinto, P., L. Allende & I. O’Farrell, 2007. Influence of free-floating plants on the structure of a natural phytoplankton assemblage: an experimental approach. Journal of Plankton Research 29: 47–56.

    Article  CAS  Google Scholar 

  • Dokulil, M. T. & K. Teubner, 2000. Cyanobacterial dominance in lakes. Hydrobiologia 438: 1–12.

    Article  CAS  Google Scholar 

  • Grigorszky, I., K. T. Kiss, V. Béres, I. Bácsi, M. M-Hamvas, C. Máthé, G. Vasas, J. Padisák, G. Borics, M. Gligora & G. Borbély, 2006. The effects of temperature, nitrogen, and phosphorus on the encystment of Peridinium cinctum, Stein (Dinophyta). Hydrobiologia 563: 527–535.

    Article  CAS  Google Scholar 

  • Hein, T., C. Baranyi, G. Heiler, C. Holarek, P. Riedler & F. Schiemer, 1999. Hydrology as a major factor determining plankton development in two floodplain segments and the River Danube, Austria. Archiv für Hydrobiologie Supplement 115: 439–452.

    Google Scholar 

  • Henle, K., M. Scholz, F. Dziock, S. Stab & F. Foeckler, 2006. Bioindication and functional response in floodplain systems: Where to from here? International Review of Hydrobiology 91: 380–387.

    Article  Google Scholar 

  • Horvatić, J., M. Mihaljević & F. Stević, 2003. Algal growth potential of Chlorella kessleri FOTT et NOV. in comparison with in situ microphytoplankton dynamics in the water of Lake Sakadaš marshes. Periodicum Biologorum 105: 307–312.

    Google Scholar 

  • Ibañez, M. S. R., 1998. Phytoplankton composition and abundance of a central Amazonian floodplain lake. Hydrobiologia 362: 79–83.

    Article  Google Scholar 

  • Izaguirre, I., I. O’Farrell & G. Tell, 2001. Variation in phytoplankton composition and limnological features in a water-water ecotone of the Lower Paraná Basin (Argentina). Freshwater Biology 46: 63–74.

    Article  Google Scholar 

  • Javornický, P. & J. Komárková, 1973. The changes in several parameters of plankton primary productivity in Slapy Reservoir 1960–1967, their mutual correlations and correlations with the main ecological factors. In Hrbáček, J. & M. Straškraba (eds), Hydrobiological Studies 2. Academia, Prague: 155–211.

    Google Scholar 

  • Junk, W. J., P. B. Bayley & R. E. Sparks, 1989. The flood pulse concept in river floodplain system. Canadian Special Publication of Fisheries Aquatic Sciences 106: 110–127.

    Google Scholar 

  • Junk, W. J. & K. M. Wantzen, 2003. The flood pulse concept: New aspects, approaches, and applications—an update. In Welcomme R. L. & T. Petr (eds), Proceedings of the Second International Symposium on the Management of Large Rivers for Fisheries, Vol. 2. Food and Agriculture Organization & Mekong River Commission. FAO Regional Office for Asia and the Pacific, Bangkok. RAP Publication 2004/17.

  • Keckeis, S., C. Baranyi, T. Hein, C. Holarek, P. Riedler & F. Schiemer, 2003. The significance of zooplankton grazing in a floodplain system of the River Danube. Journal of Plankton Research 25: 243–253.

    Article  Google Scholar 

  • Komárková, J., 1989. Primárni produkce ř as ve slatkovodních ekosysteméch. In Dykyová, D. (ed.), Metody studia ecosystémů. Academia Praha, Praha: 330–347.

    Google Scholar 

  • Lewis, W. M., 2000. Basis for the protection and management of tropical lakes. Lakes & Reservoirs Research and Management 5: 34–48.

    Google Scholar 

  • Margalef, R., 1997. Our Biosphere. Excellence in Ecology 10. Ecology Institute, Oldenburg/Luhe, Germany.

    Google Scholar 

  • McCarthy, M. J., K. S. McNeal, J. W. Morse & W. S. Gardner, 2008. Bottom-water hypoxia effects on sediment–water interface nitrogen transformations in a seasonally hypoxic, shallow bay (Corpus Christi Bay, TX, USA). Estuaries and Coasts 31: 521–531.

    Article  CAS  Google Scholar 

  • Mihaljević, M., D. Getz, Z. Tadić, B. Živanović, D. Gucunski, J. Topić, I. Kalinović & J. Mikuska, 1999. Kopački Rit—Research Survey and Bibliography. Croatian Academy of Arts and Sciences, Zagreb.

    Google Scholar 

  • Mihaljević, M. & D. Novoselić, 2000. Trophic state of Lake Sakadaš (Nature Reserve Kopački rit) in the late autumnal and winter period of 1997/98. Periodicum Biologorum 102: 253–257.

    Google Scholar 

  • Mischke, U. & B. Nixdorf, 2003. Equilibrium phase conditions in shallow German lakes: how Cyanoprokaryota species establish a steady state phase in late summer. Hydrobiologia 502: 123–132.

    Article  Google Scholar 

  • Muzaffar, S. B. & F. A. Ahmed, 2007. The effects of the flood cycle on the diversity and composition of the phytoplankton community of a seasonally flooded Ramsar wetland in Bangladesh. Wetlands Ecology and Management 15: 81–93.

    Article  Google Scholar 

  • Nabout, J. C., I. S. Noguera & L. G. Oliviera, 2006. Phytoplankton community of floodplain lakes of the Araguaia River, Brazil, in the rainy and dry seasons. Journal of Plankton Research 28: 181–193.

    Article  Google Scholar 

  • Naselli-Flores, L., J. Padisák, M. T. Dokulil & I. Chorus, 2003. Equilibrium/steady-state concept in phytoplankton ecology. Hydrobiologia 502: 395–403.

    Article  Google Scholar 

  • Nixdorf, B., U. Mischke & J. Rücker, 2003. Phytoplankton assemblages and steady state in deep and shallow eutrophic lakes–an approach to differentiate the habitat properties of Oscillatoriales. Hydrobiologia 502: 111–121.

    Article  Google Scholar 

  • O’Farrell, I., P. d. T. Pinto & I. Izaguirre, 2007. Phytoplankton morphological response to the underwater light conditions in a vegetated wetland. Hydrobiologia 578: 65–77.

    Article  Google Scholar 

  • Padisák, J., G. Borics, G. Fehér, I. Grigorszky, I. Oldal, A. Schmidt & Z. Zámbóné-Doma, 2003. Dominant species, functional assemblages and frequency of equilibrium phases in late summer phytoplankton assemblages in Hungarian small shallow lakes. Hydrobiologia 502: 157–168.

    Article  Google Scholar 

  • Paidere, J., D. Gruberts, A. Škute & I. Druvietis, 2007. Impact of two different flood pulses on planktonic communities of the largest floodplain lakes of the Daugava River (Latvia). Hydrobiologia 592: 303–314.

    Article  Google Scholar 

  • Pithart, D., R. Pichlová, M. Bílý, J. Hrbáček, K. Novotná & L. Pechar, 2007. Spatial and temporal diversity of small shallow watersin river Lužnice floodplain. Hydrobiologia 584: 256–275.

    Article  CAS  Google Scholar 

  • Reynolds, C. S., V. Huszar, C. Kruk, L. Naselli-Flores & S. Melo, 2002. Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research 24: 417–428.

    Article  Google Scholar 

  • Reynolds, C. S., J. Padisák & U. Sommer, 1993. Intermediate disturbance in the ecology of phytoplankton and the maintenance of species diversity: a synthesis. Hydrobiologia 249: 183–188.

    Article  Google Scholar 

  • Riedler, P., C. Baranyi, T. Hein, S. Keckeis & M. Schagerl, 2006. Abiotic and biotic control of phytoplankton development in dynamic side-arms of the River Danube. Archiv für Hydrobiologie Supplement 158/4. Large Rivers 16: 577–594.

    Google Scholar 

  • Rojo, C. & M. Álvarez-Cobelas, 2003. Are there steady-state phytoplankton assemblages in the field? Hydrobiologia 502: 3–12.

    Article  Google Scholar 

  • Rojo, C., E. Ortega-Mayagoitia & M. Álvarez-Cobelas, 2000. Lack of pattern among phytoplankton assemblages. Or, what does the exception to the rule mean? Hydrobiologia 424: 133–139.

    Article  Google Scholar 

  • Roozen, F. C. J. M., G. J. Geest, B. W. Ibelings, R. Roijackers, M. Scheffer & A. D. Buijse, 2003. Lake age and water level affect the turbidity of floodplain lakes along the lower Rhine. Freshwater Biology 48: 519–531.

    Article  Google Scholar 

  • Rott, E., 1981. Some results from phytoplankton counting intercalibrations. Swiss Journal of Hydrology 43: 34–62.

    Article  Google Scholar 

  • Schmidt, A., 1992. Das Phytoplankton, das Phytobenthos und die Makrophyten der Donau. Wien, Limnologische Berichte Donau 77–101.

  • Sommer, U., 1989. Toward a Darwinian ecology of plankton. In Sommer, U. (ed.), Plankton Ecology. Springer-Verlag, Berlin, Heildelberg, New York, London, Paris, Tokyo: 1–8.

    Google Scholar 

  • Sommer, U., J. Padisák, C. S. Reynolds & P. Juhász-Nagy, 1993. Hutchinson’s heritage: the diversity-disturbance relationship in phytoplankton. Hydrobiologia 249: 1–7.

    Article  Google Scholar 

  • Sournia, A. (ed.), 1978. Phytoplankton Manual. UNESCO, Paris: 337.

    Google Scholar 

  • Stević, F., M. Mihaljević & J. Horvatić, 2005. Interactions between microphytoplankton of the Danube, its sidearms and wetlands (1426–1388 r. km, Croatia). Periodicum biologorum 107: 299–304.

    Google Scholar 

  • Stoyneva, M. P., 1998. Development of the phytoplankton of the shallow Srebarna Lake (North-Eastern Bulgaria) across a trophic gradient. Hydrobiologia 369(370): 259–267.

    Article  Google Scholar 

  • Stoyneva, M. P., 2003. Steady-state phytoplankton assemblages in shallow Bulgarian wetlands. Hydrobiologia 502: 169–176.

    Article  Google Scholar 

  • ter Braak, C. J. F. & P. Šmilauer, 2002. CANOCO reference manual and CanoDraw for Windows user’s guide: Software for canonical community ordination (version 4.5). Microcomputer Power (Ithaca, NY, USA).

  • Thomaz, S. M., L. M. Bini & R. L. Bozelli, 2007. Floods increase similarity among aquatic habitats in river-floodplain systems. Hydrobiologia 579: 1–13.

    Article  Google Scholar 

  • Tockner, K., N. P. D. Reiner, F. Schiemer & J. Vard, 1999. Hydrological connectivity and the exchange of organic matter and nutrients in a dynamic river floodplain system (Danube, Austria). Freshwater Biology 41: 521–535.

    Article  Google Scholar 

  • Tockner, K. & J. A. Standford, 2002. Riverine flood plains: present state and future trends. Environmental Conservation 29: 308–330.

    Article  Google Scholar 

  • Török, L., 2006. Contribution to the knowledge on quantitative and qualitative status of diatoms population from plankton of some lakes of the Danube Delta at the end of second millenium (1995–2000). Doctoral thesis. Danube Delta National Institute, Tulcea, Romania, p. 87. (http://www.indd.tim.ro).

  • Townsend, S. A., 2006. Hydraulic phases, persistant stratification, and phytoplankton in a tropical floodplain lake (Mary River, northern Australia). Hydrobiologia 556: 163–179.

    Article  CAS  Google Scholar 

  • Utermöhl, H., 1958. Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitteilungen der internationale Vereinigung für theoretische und angewandte Limnologie 9: 1–38.

    Google Scholar 

  • Weilhoefer, C. L. & Y. Pan, 2007. Relationships between diatoms and environmental variables in wetlands in the Willamette valley, Oregon, USA. Wetlands 27: 668–682.

    Article  Google Scholar 

  • Zalocar de Domitrovic, Y., 2003. Effect of fluctuations in water level on phytoplankton development in three lakes of the Parana river floodplain (Argentina). Hydrobiologia 510: 175–193.

    Article  Google Scholar 

Download references

Acknowledgments

This project was supported by the Croatian Ministry of Science, Education, and Sports. We thank the anonymous reviewers for their constructive comments and helpful suggestions which substantially improved this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melita Mihaljević.

Additional information

Handling editor: J. Padisak

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mihaljević, M., Stević, F., Horvatić, J. et al. Dual impact of the flood pulses on the phytoplankton assemblages in a Danubian floodplain lake (Kopački Rit Nature Park, Croatia). Hydrobiologia 618, 77–88 (2009). https://doi.org/10.1007/s10750-008-9550-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-008-9550-6

Keywords

Navigation