Skip to main content
Log in

Epipelic and pelagic primary production in Alaskan Arctic lakes of varying depth

  • Primary research paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

We compared on eight dates during the ice-free period physicochemical properties and rates of phytoplankton and epipelic primary production in six arctic lakes dominated by soft bottom substrate. Lakes were classified as shallow (\( \overline {\text{z}} \) < 2.5 m), intermediate in depth (2.5 m < \( \overline {\text{z}} \) < 4.5 m), and deep (\( \overline {\text{z}} \) > 4.5 m), with each depth category represented by two lakes. Although shallow lakes circulated freely and intermediate and deep lakes stratified thermally for the entire summer, dissolved oxygen concentrations were always >70% of saturation values. Soluble reactive phosphorus and dissolved inorganic nitrogen (DIN = NO3 –N + NH4 +–N) were consistently below the detection limit (0.05 μmol l−1) in five lakes. However, one lake shallow lake (GTH 99) periodically showed elevated values of DIN (17 μmol l−1), total-P (0.29 μmol l−1), and total-N (33 μmol l−1), suggesting wind-generated sediment resuspension. Due to increased nutrient availability or entrainment of microphytobenthos, GTH 99 showed the highest average volume-based values of phytoplankton chlorophyll a (chl a) and primary production, which for the six lakes ranged from 1.0 to 2.9 μg l−1 and 0.7–3.8 μmol C l−1 day−1. Overall, however, increased \( \overline {\text{z}} \) resulted in increased area-based values of phytoplankton chl a and primary production, with mean values for the three lake classes ranging from 3.6 to 6.1 mg chl a m−2 and 3.2–5.8 mmol C m−2 day−1. Average values of epipelic chl a ranged from 131 to 549 mg m−2 for the three depth classes, but levels were not significantly different due to high spatial variability. However, average epipelic primary production was significantly higher in shallow lakes (12.2 mmol C m−2 day−1) than in intermediate and deep lakes (3.4 and 2.4 mmol C m−2 day−1). Total primary production (6.7–15.4 mmol C m−2 day−1) and percent contribution of the epipelon (31–66%) were inversely related to mean depth, such that values for both variables were significantly higher in shallow lakes than in intermediate or deep lakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Björk-Ramberg, S., 1983. Production of epipelic algae before and during lake fertilization in a subarctic lake. Holarctic Ecology 6: 349–355.

    Google Scholar 

  • Björk-Ramberg, S. & C. Ånell, 1985. Production and chlorophyll concentration of epipelic and epilithic algae in fertilized and unfertilized subarctic lakes. Hydrobiologia 126: 213–219.

    Article  Google Scholar 

  • Bonilla, S., V. Villeneuve & W. F. Vincent, 2005. Benthic and planktonic algal communities in a high arctic lake: pigment structure and contrasting responses to nutrient enrichment. Journal of Phycology 41: 1120–1130.

    Article  CAS  Google Scholar 

  • Bootsma, M. A., R. E. Heckey, R. H. Hesslein & G. F. Turner, 1996. Food partitioning among Lake Malawi nearshore fishes as revealed by stable isotope analysis. Ecology 77: 1286–1290.

    Article  Google Scholar 

  • Cariou-LeGall, V. & G. F. Blanchard, 1995. Monthly HPLC measurements of pigment concentration from an intertidal muddy sediment of Marennes-Oleron Bay, France. Marine Ecology Progress Series 121: 171–179.

    Article  CAS  Google Scholar 

  • Carpenter, S. R., J. F. Kitchell, J. R. Hodgson, P. A. Cochran, J. J. Elser, M. M. Elser, D. M. Lodge, D. Kretchmer, X. He & C. N. Vonende, 1996. Regulation of lake primary productivity by food web structure. Ecology 68: 1863–1876.

    Article  Google Scholar 

  • Carrick, H. J., F. J. Aldridge & C. L. Schelske, 1993. Wind influences phytoplankton biomass and composition in a shallow, productive lake. Limnology and Oceanography 38: 1179–1192.

    Google Scholar 

  • Chalfant, B. A., 2004. A Landscape-level Analysis of Physical, Chemical and Biological Characteristics of 41 Arctic Lakes Near Toolik Lake, Alaska, USA. M.S. Thesis, University of North Carolina, Chapel Hill, NC.

  • Downing, J. A., Y. T. Prairie, J. J. Cole, C. M. Duarte, L. J. Tranvik, R. G. Striegl, W. H. McDowell, P. Kortelainen, N. F. Cararo, J. M. Melack & J. J. Middelburg, 2006. The global abundance and size distribution of lakes, ponds and impoundments. Limnology and Oceanography 51: 2388–2397.

    Google Scholar 

  • Duff, K. E., T. E. Laing, J. P. Smol & D. R. S. Lean, 1999. Limnological characteristics of lakes located across arctic treeline in northern Russia. Hydrobiologia 391: 205–222.

    Google Scholar 

  • Gettel, G. M., A. E. Giblin & R. W. Howarth, 2007. The effects of grazing by the snail, Lymnaea elodes, on benthic N 2 fixation and primary production in oligotrophic, arctic lakes. Limnology and Oceanography 52: 2398–2409.

    CAS  Google Scholar 

  • Hamilton, D. P. & S. F. Mitchell, 1997. Wave-induced shear stresses, plant nutrients and chlorophyll in seven shallow lakes. Freshwater Biology 38: 159–168.

    Article  Google Scholar 

  • Hamilton, P. B., K. Gajewski, D. E. Atkinson & D. R. S. Lean, 2001. Physical and chemical limnology of 204 lakes from the Canadian Arctic Archipelago. Hydrobiologia 457: 133–148.

    Article  CAS  Google Scholar 

  • Hansson, L.-A., 1992. Factors regulating periphytic algal biomass. Limnology and Oceanography 37: 322–328.

    CAS  Google Scholar 

  • Hansson, L.-A., 1996. Algal recruitment from lake sediments in relation to grazing, sinking, and dominance patterns in the phytoplankton community. Limnology and Oceanography 41: 1312–1323.

    Google Scholar 

  • Heckey, R. E. & R. H. Hesslein, 1995. Contributions of benthic algae to lake food webs as revealed by stable isotope analysis. Journal of the North American Benthological Society 14: 631–653.

    Article  Google Scholar 

  • Hinzman, L. D., et al., 2005. Evidence and implications of recent climate change in northern Alaska and other arctic regions. Climatic Change 72: 251–298.

    Article  Google Scholar 

  • Hobbie, J. E., 1964. Carbon 14 measurements of primary production in two Alaskan arctic lakes. Verhandlungen Internationale Vereinigung für Theoretische und Angewandte Limnologie 15: 360–364.

    Google Scholar 

  • Hobbie, J. E., 1984. Polar limnology. In Taub, F. B. (ed.), Ecosystems of the World, Vol. 23. Lakes and Reservoirs. Elsevier, Amsterdam: 63–105.

  • Kalff, J., 1967. Phytoplankton dynamics in an arctic lake. Journal of the Fisheries Research Board of Canada 24: 1861–1871.

    Google Scholar 

  • Kalff, J. & H. E. Welch, 1974. Phytoplankton production in Char Lake, a natural polar lake, and Meretta Lake, a polluted polar lake, Cornwallis Island, Northwest Territories. Journal of the Fisheries Research Board of Canada 31: 621–636.

    Google Scholar 

  • Kirk, J. T. O., 1994. Light and Photosynthesis in Aquatic Ecosystems. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Kling, G. E., W. J. O’Brien, M. C. Miller & A. E. Hershey, 1992. The biogeochemistry and zoogeography of lakes and rivers in arctic Alaska. Hydrobiologia 240: 1–14.

    CAS  Google Scholar 

  • LaPerriere, J. L., J. R. Jones & D. K. Swanson, 2003. Limnology of Gates of the Arctic National Park and Preserve, Alaska. Lake and Reservoir Management 19: 108–121.

    Article  CAS  Google Scholar 

  • Levine, M. A. & S. C. Whalen, 2001. Nutrient limitation of phytoplankton production in Alaskan Arctic foothill lakes. Hydrobiologia 455: 189–201.

    Article  Google Scholar 

  • Liboriussen, L. & E. Jeppesen, 2003. Temporal dynamics in epipelic, pelagic and epiphytic algal production in a clear and a turbid shallow lake. Freshwater Biology 48: 418–431.

    Article  Google Scholar 

  • Lim, D. S. S., M. S. V. Douglas, J. P. Smol & D. R. S. Lean, 2001. Physical and chemical limnological characteristics of 38 lakes and ponds on Bathurst Island, Nunavut, Canadian High Arctic. International Review of Hydrobiology 86: 1–22.

    Article  CAS  Google Scholar 

  • Michelutti, N., M. S. V. Douglas, D. R. S. Lean & J. P. Smol, 2002. Physical and chemical limnology of 34 ultra-oligotrophic lakes and ponds near Wynniatt Bay, Victoria Island, Arctic Canada. Hydrobiologia 482: 1–13.

    Article  CAS  Google Scholar 

  • Miller, M. C., G. R. Hater, P. Spatt, P. Westlake & D. Yeakel, 1986. Primary production and its control in Toolik Lake, Alaska. Archiv für Hydrobiologie 74: 97–131.

    Google Scholar 

  • O’Brien, W. J., A. E. Hershey, J. E. Hobbie, M. A. Hullar, G. W. Kipphut, M. C. Miller, B. Moller & J. R. Vestal, 1992. Control mechanisms of arctic lake ecosystems: a limnocorral experiment. Hydrobiologia 240: 143–188.

    CAS  Google Scholar 

  • O’Brien, W. J., M. Barfield, N. Bettez, A. E. Hershey, J. E. Hobbie, G. W. Kipphut, G. E. Kling & M. C. Miller, 2005. Long-term response and recovery to nutrient addition of a partitioned arctic lake. Freshwater Biology 50: 731–741.

    Article  Google Scholar 

  • Ogilvie, B. G. & S. F. Mitchell, 1998. Does sediment resuspension have persistent effects on phytoplankton? Experimental studies in three shallow lakes. Freshwater Biology 40: 51–63.

    Article  Google Scholar 

  • Overland, J. E., M. C. Spillane & N. N. Soreide, 2004. Integrated analysis of physical and biological pan-arctic change. Climatic Change 63: 291–322.

    Article  Google Scholar 

  • Palmer, M. A., A. P. Covich, S. Lake, P. Biro, J. J. Brooks, J. Cole, C. Dahm, J. Gilbert, W. Goedkoop, K. Martens, J. Verhoeven & W. J. Van De Bund, 2000. Linkages between aquatic sediment biota and life above sediments as potential drivers of biodiversity and ecological processes. BioScience 50: 1062–1075.

    Article  Google Scholar 

  • Parsons, T. R., Y. Maita & C. M. Lalli, 1984. A Manual of Chemical and Biological Methods for Seawater Analysis. Pergamon Press, Oxford.

    Google Scholar 

  • Pienitz, R., J. P. Smol & D. R. S. Lean, 1997a. Physical and chemical limnology of 59 lakes located between the southern Yukon and the Tuktoyaktuk Peninsula, Northwest Territories (Canada). Canadian Journal of Fisheries and Aquatic Sciences 54: 330–346.

    Article  CAS  Google Scholar 

  • Pienitz, R., J. P. Smol & D. R. S. Lean, 1997b. Physical and chemical limnology of 24 lakes located between Yellowknife and Contwoyto Lake, Northwest Territories (Canada). Canadian Journal of Fisheries and Aquatic Sciences 54: 347–358.

    Article  CAS  Google Scholar 

  • Ping, C. L., J. G. Bockheim, J. M. Kimble, G. J. Michaelson & D. A. Walker, 1998. Characteristics of cryogenic soils along a latitudinal transect in Arctic Alaska. Journal of Geophysical Research 103: 28917–28928.

    Article  CAS  Google Scholar 

  • Prowse, T. D., F. J. Wrona, J. D. Reist, J. J. Gibson, J. E. Hobbie, L. M. J. Levesque & W. F. Vincent, 2006. Climate change effects on hydroecology of arctic freshwater ecosystems. Ambio 35: 347–358.

    Article  PubMed  CAS  Google Scholar 

  • Ramlal, P. S., R. H. Hesslein, R. E. Heckey, E. J. Fee, J. M. W. Rudd & S. J. Guilfdford, 1994. The organic carbon budget of a shallow Arctic tundra lake on the Tuktoyaktuk Peninsula, N.W.T., Canada. Biogeochemistry 24: 145–172.

    Article  CAS  Google Scholar 

  • Rautio, M. & W. F. Vincent, 2007. Isotopic analysis of the sources of organic carbon for zooplankton in shallow subarctic and arctic waters. Ecography 30: 77–87.

    Google Scholar 

  • Reddy, K. R., M. M. Fisher & D. Ivanhoff, 1996. Resuspension and diffusive flux of nitrogen and phosphorus in a hypereutrophic lake. Journal of Environmental Quality 25: 363–371.

    CAS  Google Scholar 

  • Roots, E. F., 1989. Climate change: high latitude regions. Climatic Change 15: 223–253.

    Article  Google Scholar 

  • Rühland, K. & J. P. Smol, 1998. Limnological characteristics of 70 lakes spanning arctic treeline from Coronation Gulf to Great Slave Lake in the Central Northwest Territories, Canada. International Review of Hydrobiology 83: 183–203.

    Article  Google Scholar 

  • Sand-Jensen, K. & J. Borum, 1991. Interactions among phytoplankton, periphyton, and macrophytes in temperate freshwaters and estuaries. Aquatic Botany 41: 137–175.

    Article  Google Scholar 

  • Schallenberg, M. & C. W. Burns, 2004. Effects of sediment resuspension on phytoplankton production: teasing apart the influences of light, nutrients and algal entrainment. Freshwater Biology 49: 143–159.

    Article  CAS  Google Scholar 

  • Scheffer, M., 1998. Ecology of Shallow Lakes. Chapman and Hall, London.

    Google Scholar 

  • Schelske, C. L., H. J. Carrick & F. J. Aldridge, 1995. Can wind-induced resuspension of meroplankton affect phytoplankton dynamics? Journal of the North American Benthological Society 14: 616–630.

    Article  Google Scholar 

  • Schindler, D. E. & M. D. Scheuerell, 2002. Habitat coupling in lake ecosystems. Oikos 98: 177–189.

    Article  Google Scholar 

  • Schindler, D. W. & J. P. Smol, 2006. Cumulative effects of climate warming and other human activities on freshwaters of arctic and subarctic North America. Ambio 35: 160–168.

    Article  PubMed  Google Scholar 

  • Serrese, M. C., J. E. Walsh, F. S. I. Chapin, T. Osterkamp, M. Dyurgerov, V. Romanovsky, W. C. Oechel, J. Morrison, T. Zhang & R. G. Barry, 2000. Observational evidence of recent change in the northern high latitude environment. Climatic Change 46: 159–207.

    Article  Google Scholar 

  • Sólorzano, L. & J. H. Sharp, 1980a. Determination of total dissolved nitrogen in natural waters. Limnology and Oceanography 25: 751–754.

    Google Scholar 

  • Sólorzano, L. & J. H. Sharp, 1980b. Determination of total dissolved phosphorus and particulate phosphorus in natural waters. Limnology and Oceanography 25: 754–757.

    Google Scholar 

  • Søndergaard, M., P. Kristensen & E. Jeppesen, 1992. Phosphorus release from resuspended sediment in the shallow and wind-exposed Lake Arresø, Denmark. Hydrobiologia 228: 91–99.

    Article  Google Scholar 

  • Sorsa, K., 1976. Primary production of epipelic algae in Lake Suomunjärvi, Finnish North Karelia. Annales Botanici Fennici 16: 351–367.

    Google Scholar 

  • Stainton, M. P., 1973. A syringe gas-stripping procedure for gas-chromatographic determination of dissolved inorganic and organic carbon in fresh water and carbonates in sediments. Journal of the Fisheries Research Board of Canada 30: 1441–1445.

    CAS  Google Scholar 

  • Stanley, D. W., 1976. Productivity of epipelic algae in tundra ponds and a lake near Barrow, Alaska. Ecology 57: 1015–1024.

    Article  Google Scholar 

  • Stumm, W. & J. J. Morgan, 1996. Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters. John Wiley & Sons, NY.

    Google Scholar 

  • Vadeboncoeur, Y. & D. M. Lodge, 1998. Dissolved inorganic carbon sources for epipelic algal production: sensitivity of primary production estimates to spatial and temporal distribution of 14C. Limnology and Oceanography 43: 1222–1226.

    CAS  Google Scholar 

  • Vadeboncoeur, Y. & D. M. Lodge, 2000. Periphyton production on wood and sediment: substratum-specific response to laboratory and whole-lake nutrient manipulations. Journal of the North American Benthological Society 19: 68–81.

    Article  Google Scholar 

  • Vadeboncoeur, Y., D. M. Lodge & S. R. Carpenter, 2001. Whole-lake fertilization effects on distribution of primary production between benthic and pelagic habitats. Ecology 82: 1065–1077.

    Article  Google Scholar 

  • Vadeboncoeur, Y. & A. D. Steinman, 2002. Periphyton function in lake ecosystems. Scientific World Journal 2: 1–20.

    Google Scholar 

  • Vadeboncoeur, Y., M. J. Vander Zanden & D. M. Lodge, 2002. Putting the lake back together: reintegrating benthic pathways into lake food web models. BioScience 52: 44–54.

    Article  Google Scholar 

  • Vadeboncoeur, Y., E. Jeppesen, M. J. Vander Zanden, H.-H. Schierup, K. Christoffersen & D. M. Lodge, 2003. From Greenland to green lakes: cultural eutrophication and the loss of benthic pathways in lakes. Limnology and Oceanography 48: 1408–1418.

    Google Scholar 

  • Vander Zanden, M. J. & Y. Vadeboncoeur, 2002. Fishes as integrators of benthic and pelagic food webs in lakes. Ecology 83: 2152–2161.

    Google Scholar 

  • Vézina, S. & W. F. Vincent, 1997. Arctic cyanobacteria and limnological properties of their environment: Bylot Island, Northwest Territories, Canada (73°N, 80°W). Polar Biology 17: 523–534.

    Article  Google Scholar 

  • Wahrhaftig, C., 1965. Physiographic Divisions of Alaska. U.S. Geological Survey Professional Paper 482. U.S. Government Printing Office, Washington, D.C.

  • Walker, M. W., D. A. Walker & N. A. Auerback, 1994. Plant communities of tussock tundra landscape in the Brooks Range Foothills. Journal of Vegetative Science 5: 843–866.

    Article  Google Scholar 

  • Weiss, R. F., 1974. Carbon dioxide in water and seawater. Marine Chemistry 2: 203–215.

    Article  CAS  Google Scholar 

  • Welch, H. E. & J. Kalff, 1974. Benthic photosynthesis and respiration in Char Lake. Journal of the Fisheries Research Board of Canada 31: 609–620.

    Google Scholar 

  • Welch, H. E., J. A. Legault & H. L. Kling, 1989. Phytoplankton, nutrients and primary production in fertilized and natural lakes at Saqvaqjuac, N.W.T. Canadian Journal of Fisheries and Aquatic Sciences 46: 90–107.

    Article  Google Scholar 

  • Welschmeyer, N. A., 1994. Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and phaeopigments. Limnology and Oceanography 39: 1985–1992.

    Article  CAS  Google Scholar 

  • Wetzel, R. G. & G. E. Likens, 2000. Limnological Analyses, 3rd ed. Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Whalen, S. C. & V. Alexander, 1983. Chemical influences on 14C and 15N primary production in an arctic lake. Polar Biology 5: 211–219.

    Article  Google Scholar 

  • Whalen, S. C. & V. Alexander, 1984. Diel variations in inorganic carbon and nitrogen uptake by phytoplankton in an arctic lake 1. Journal of Plankton Research 6: 571–590.

    Article  CAS  Google Scholar 

  • Whalen, S. C. & V. Alexander, 1986. Seasonal inorganic carbon and nitrogen transport in an arctic lake. Canadian Journal of Fisheries and Aquatic Sciences 43: 1177–1186.

    Article  CAS  Google Scholar 

  • Whalen, S. C., B. A. Chalfant, E. N. Fischer, K. A. Fortino & A. E. Hershey, 2006. Comparative influence of resuspended glacial sediment on physicochemical characteristics and primary production in two arctic lakes. Aquatic Science 68: 65–77.

    CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by National Science Foundation grant NSF/DEB-0090202. We thank John Bonde (University of Minnesota—Duluth) for mapping lake bathymetry. Jeremiah Shackelford and Jason Hales provided field assistance, while Prasad Pathak generously constructed the location map.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen C. Whalen.

Additional information

Handling editor: L. Naselli-Flores

Rights and permissions

Reprints and permissions

About this article

Cite this article

Whalen, S.C., Chalfant, B.A. & Fischer, E.N. Epipelic and pelagic primary production in Alaskan Arctic lakes of varying depth. Hydrobiologia 614, 243–257 (2008). https://doi.org/10.1007/s10750-008-9510-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-008-9510-1

Keywords

Navigation