Skip to main content

North Patagonian Andean Deep Lakes: Impact of Glacial Recession and Volcanic Eruption

  • Chapter
  • First Online:
Freshwaters and Wetlands of Patagonia

Abstract

North Patagonian Andean deep lakes (>100 m depth) are ultraoligotrophic, and thus are high light-low nutrient environments. In this chapter, we present examples and discuss the effect of particle input due to climate change (changes in glacial clay due to glacial recession) and volcanic eruption (volcanic ashes) in the water column of these lakes. The best descriptor of water column functioning was the vertical position of the deep chlorophyll maximum that was very sensitive to changes in underwater light and may be used as a simple variable to track changes in the dynamics of lakes. Mixotrophy is particularly important in the plankton of these lakes, and here we show how glacier recession affects, through the glacier clay, the bacterivory of these protists. Finally, we present results on how volcanic ashes triggered the disappearance of cladoceran populations, and changes in glacier clay affect zooplankton filter feeders, modifying the food quality (C:P ratio) that drives the coexistence between cladocerans and copepods.

Qué tranquilo y bello el cuadro en las cercanías del Leman argentino ¡más grandioso que el Suizo!.’ (How calm and beautiful scene in the surroundings of the Argentinian Leman, more magnificent than the Swiss one!)

F.P. Moreno – January 22, 1876.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albariño RJ, Balseiro EG (2001) Food quality, larval consumption, and growth of Klapopteryx kuscheli (Plecoptera: Austroperlidae) from a south Andes stream. J Freshw Ecol 16:517–526

    Google Scholar 

  • Alonso C, Rocco V, Barriga JP, Battini MA, Zagarese H (2004) Surface avoidance by freshwater zooplankton: field evidence on the role of ultraviolet radiation. Limnol Oceanogr 49:225–232

    CAS  Google Scholar 

  • Andersen T, Hessen DO (1991) Carbon, nitrogen, and phosphorus content of freshwater zooplankton. Limnol Oceanogr 36:807–814

    CAS  Google Scholar 

  • Ariztegui D, Bösch P, Davaud E (2007) Dominant ENSO frequencies during the Little Ice Age in Northern Patagonia: the varved record of proglacial Lago Frías, Argentina. Quat Int 161:46–55. https://doi.org/10.1016/j.quaint.2006.10.022

    Article  Google Scholar 

  • Baigún C, Marinone MC (1995) Cold-temperate lakes of South America: do they fit Northern hemisphere models? Arch Hydrobiol 135:23–51

    Google Scholar 

  • Balseiro E, Souza M, Modenutti B, Reissig M (2008) Living in transparent lakes: Low food P:C ratio decreases antioxidant response to ultraviolet radiation in Daphnia. Limnol Oceanogr 53:2383–2390

    CAS  Google Scholar 

  • Balseiro EG, Modenutti BE, Queimaliños C, Reissig M (2007) Daphnia distribution in Andean Patagonian lakes: effect of low food quality and fish predation. Aquat Ecol 41:599–609

    CAS  Google Scholar 

  • Balseiro EG, Modenutti BE, Queimaliños CP (2001) Feeding of Boeckella gracilipes (Copepoda, Calanoida) on ciliates and phytoflagellates in an ultraoligotrophic Andean lake. J Plankton Res 23:849–857

    Google Scholar 

  • Barriga JP, Battini MA, Macchi PJ, Milano D, Cussac VE (2002) Spatial and tempòral distribution of landlocked Galaxias maculatus and Galaxias platei (Pisces, Galaxiidae) in a lake in the South Andes. N Z J Mar Freshwat Res 36:345–359

    Google Scholar 

  • Barros V, Field C, Dokke D, Mastrandrea M, Mach K, Bilir T, Chatterjee M, Ebi K, Estrada Y, Genova R (2014) Climate change 2014: impacts, adaptation, and vulnerability. Part B: regional aspects. Contribution of Working Group II to the fifth assessment report of the Intergovernmental Panel on climate change. Fifth assessment report of the Intergovernmental Panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Bastidas Navarro M, Balseiro E, Modenutti B (2014) Bacterial community structure in patagonian Andean Lakes above and below timberline: from community composition to community function. Microb Ecol 68:528–541. https://doi.org/10.1007/s00248-014-0439-9

    Article  Google Scholar 

  • Bastidas Navarro M, Díaz Villanueva V, Modenutti B (2019) High phosphorus content in leachates of the austral beech Nothofagus pumilio stimulates bacterioplankton C-consumption. Freshw Sci 38:435–447. https://doi.org/10.1086/704752

    Article  Google Scholar 

  • Bastidas Navarro M, Martyniuk N, Balseiro E, Modenutti B (2018) Effect of glacial lake outburst floods on the light climate in an Andean Patagonian lake: implications for planktonic phototrophs. Hydrobiologia 816:39–48

    CAS  Google Scholar 

  • Berge T, Chakraborty S, Hansen PJ, Andersen KH (2017) Modeling succession of key resource-harvesting traits of mixotrophic plankton. ISME J 11:212–223. https://doi.org/10.1038/ismej.2016.92

    Article  CAS  Google Scholar 

  • Biedma JM (1987) Crónica histórica del lago Nahuel Huapi (Historical chronicle of Nahuel Huapi Lake). Editorial Del Nuevo Extremo

    Google Scholar 

  • Bonetto AA, Dioni W, Depetris P (1971) Informe preliminar sobre las investigaciones limnológicas de la cuenca del Río Manso y Lago Mascardi (Río Negro - Patagonia) (Preliminary report on the limnological survey of the Río Manso and Lago Mascardi basins). Fundación Bariloche 4:1–62

    Google Scholar 

  • Bown F, Rivera A (2007) Climate changes and glacier responses during recent decades in the Chilean Lake District. Global Planet Change 59:79–86

    Google Scholar 

  • Brooks JL, Dodson SL (1965) Predation, body size, and composition of plankton. Science 150:28–35

    CAS  Google Scholar 

  • Calcagno A, Fioriti M, Pedrozo F, Vigliano P, López HL, Rey C, Razquin ME, Quirós R (1995) Catálogo de lagos y embalses de la Argentina (Catalog of the lakes and reservoirs of Argentina). ARM & Asociados

    Google Scholar 

  • Callieri C, Modenutti BE, Queimaliños C, Bertoni R, Balseiro EG (2007) Production and biomass of picophytoplankton and larger autotrophs in Andean ultraoligotrophic lakes: differences in light harvesting efficiency in deep layers. Aquat Ecol 41:511–523

    CAS  Google Scholar 

  • Caneiro A, Mogni L, Serquis A, Cotaro C, Wilberger D, Ayala C, Daga R, Poire D, Scerbo E (2011) Análisis de cenizas volcánicas del Cordón Caulle (complejo volcánico Puyehue-Cordón Caulle) (Analysis of the volcanic ashes of Cordón Caulle (Puyehue-Cordón Caulle volcanic complex)). Comisión Nacional de Energía Atómica

    Google Scholar 

  • Carn SA, Pallister JS, Lara L, Ewert JW, Watt S, Prata AJ, Thomas RJ, Villarosa G (2009) The unexpected awakening of Chaitén volcano, Chile. Eos Trans Amer Geophys Union 90:205–206

    Google Scholar 

  • Castañeda M, González M (2008) Statistical analysis of the precipitation trends in the Patagonia region in southern South America. Atmosfera 21:303–317

    Google Scholar 

  • Cembrano J, Hervé F, Lavenu A (1996) The Liquiñe Ofqui fault zone: a long-lived intra-arc fault system in southern Chile. Tectonophysics 259:55–66

    Google Scholar 

  • Chillrud SN, Pedrozo FL, Temporetti PF, Planas FH, Froelich PN (1994) Chemical weathering of phosphate and germanium in glacial meltwater streams: effects of subglacial pyrite oxidation. Limnol Oceanogr 39:1130–1140

    CAS  Google Scholar 

  • Corno G, Modenutti BE, Callieri C, Balseiro EG, Bertoni R, Caravati E (2009) Bacterial diversity and morphology in deep ultraoligotrophic Andean lakes: Role of UVR on vertical distribution. Limnol Oceanogr 54:1098–1112

    CAS  Google Scholar 

  • Danger M, Leflaive J, Oumarou C, Ten-Hage L, Lacroix G (2007a) Control of phytoplankton-bacteria interactions by stoichiometric constraints. Oikos 116:1079–1086

    CAS  Google Scholar 

  • Danger M, Oumarou C, Benest D, Lacroix G (2007b) Bacteria can control stoichiometry and nutrient limitation of Phytoplankton. Funct Ecol 21:202–210

    Google Scholar 

  • Diehl S (2002) Phytoplankton, light, and nutrients in a gradient of mixing depths: theory. Ecology 83:386–398

    Google Scholar 

  • Drago E, Quiros R (1995) The hydrochemistry of the inland waters of Argentina: a review. Int J Salt Lake Res 4:315–325

    Google Scholar 

  • Dussaillant A, Bastianon E, Bertoldi W (2012) Outburst floods and morphology of Colonia and Baker rivers, Patagonia: climate change, extreme flood impacts and sustainable hydropower.

    Google Scholar 

  • Dussaillant I, Berthier E, Brun F, Masiokas M, Hugonnet R, Favier V, Rabatel A, Pitte P, Ruiz L (2019) Two decades of glacier mass loss along the Andes. Nat Geosci 12(10):802–808. https://doi.org/10.1038/s41561-019-0432-5

    Article  CAS  Google Scholar 

  • Elissondo M, Baumann V, Bonadonna C, Pistolesi M, Cioni R, Bertagnini A, Biass S, Herrero J-C, Gonzalez R (2016) Chronology and impact of the 2011 Cordón Caulle eruption, Chile. Nat Haz Earth Syst Sci 16(3):675–704. https://doi.org/10.5194/nhess-16-675-2016

    Article  Google Scholar 

  • Elser JJ, Bastidas M, Corman JR, Emick H, Kellom M, Laspoumaderes C, Lee ZM, Poret-Peterson A, Balseiro E, Modenutti B (2015) Community structure and biogeochemical impacts of microbial life on floating pumice. Appl Environ Microbiol 81(5):1542–1549. https://doi.org/10.1128/AEM.03160-14

    Article  CAS  Google Scholar 

  • Elser JJ, Fagan WF, Denno RF, Dobberfuhl DR, Folarin A, Huberty A, Interlandi S, Kilham SS, McCauley E, Schulz KL, Siemann EH, Sterner RW (2000) Nutritional constraints in terrestrial and freshwater food webs. Nature 408(6812):578–580

    CAS  Google Scholar 

  • Falkowski PG, Raven JA (2007) Aquatic photosynthesis, 2nd edn. Blackwell Science, Malden

    Google Scholar 

  • Ferris JM, Christian R (1991) Aquatic primary production in relation to microalgal responses to changing light. Aquat Sci 53:187–217

    Google Scholar 

  • Fischer R, Giebel H-A, Hillebrand H, Ptacnik R (2017) Importance of mixotrophic bacterivory can be predicted by light and loss rates. Oikos 126(5):713–722. https://doi.org/10.1111/oik.03539

    Article  CAS  Google Scholar 

  • Flint RF, Fidalgo F (1964) Glacial geology of the East flank of the Argentine Andes between Latitude 39 10′ S. and Latitude 41 20′ S. Geol Soc Am Bull 75:335–352

    Google Scholar 

  • Flynn KJ, Mitra A (2009) Building the "perfect beast": modeling mixotrophic plankton. J Plankton Res 31(9):965–992. https://doi.org/10.1093/plankt/fbp044

    Article  CAS  Google Scholar 

  • Gerea M, Queimaliños C, Unrein F (2019) Grazing impact and prey selectivity of picoplanktonic cells by mixotrophic flagellates in oligotrophic lakes. Hydrobiologia 831:5–21. https://doi.org/10.1007/s10750-018-3610-3

    Article  CAS  Google Scholar 

  • Gregory RS, Northcote TG (1993) Surface, planktonic, and benthic foraging by juvenile chinook salmon (Onchorhynchus tshawytscha) in turbid laboratory conditions. Can J Fish Aquat Sci 50:233–240

    Google Scholar 

  • Gurung TB, Urabe J, Nakanishi M (1999) Regulation of the relationship between phytoplankton Scenedesmus acutus and heterotrophic bacteria by the balance of light and nutrients. Aquat Microb Ecol 17:27–35

    Google Scholar 

  • Hall SR, Leibold MA, Lytle DA, Smith VH (2004) Stoichiometry and planktonic grazer composition over gradients of light, nutrients and predation risk. Ecology 85:2291–2301

    Google Scholar 

  • Hansson TH, Grossart HP, del Giorgio PA, St-Gelais NF, Beisner BE (2019) Environmental drivers of mixotrophs in boreal lakes. Limnol Oceanogr 64:1688–1705. https://doi.org/10.1002/lno.11144

    Article  CAS  Google Scholar 

  • Harrison S, Kargel JS, Huggel C, Reynolds J, Shugar DH, Betts RA, Emmer A, Glasser N, Haritashya UK, Klimeš J (2018) Climate change and the global pattern of moraine-dammed glacial lake outburst floods. Cryosphere 12:1195–1209

    Google Scholar 

  • Helbling EW, Villafañe V, Holm-Hansen O (1994) Effects of ultraviolet radiation on the Antarctic marine phytoplankton photosynthesis with particular attention to the influence of mixing. Antarct Res Series 62:207–227

    Google Scholar 

  • Hildebrand-Vogel R, R G, A V (1990) Subantarctic-Andean Nothofagus pumilio forests. Distribution area and systematic overview, vegetation and soils as demonstrated by an example of a South Chilean stand. Vegetatio 89:55–68

    Google Scholar 

  • Holtrop T, Huisman J, Stomp M, Biersteker L, Aerts J, Grebert T, Partensky F, Garczarek L, Woerd HJV (2021) Vibrational modes of water predict spectral niches for photosynthesis in lakes and oceans. Nat Ecol Evol 5:55–66. https://doi.org/10.1038/s41559-020-01330-x

    Article  Google Scholar 

  • Hylander S, Jephson T, Lebret K, Von Einem J, Fagerberg T, Balseiro EG, Modenutti BE, Souza MS, Laspoumaderes C, Jönsson M, Ljungberg P, Nicolle A, Nilsson PA, Ranåker L, Hansson L-A (2011) Climate-induced input of turbid glacial meltwater affects vertical distribution and community composition of phyto- and zooplankton. J Plankton Res 33:1239–1248. https://doi.org/10.1093/plankt/fbr025

    Article  Google Scholar 

  • Iriondo MH (1989) Quaternary lakes of Argentina. Palaeogeogr, Palaeoclimatol, Palaeoecol 70:81–88

    Google Scholar 

  • Jassby AD, Platt T (1976) Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnol Oceanogr 21:540–547

    CAS  Google Scholar 

  • Jones HLJ (1997) A classification of mixotrophic protists based on their behaviour. Freshw Biol 37:35–43

    Google Scholar 

  • Jones RI (2000) Mixotrophy in planktonic protists: an overview. Freshw Biol 45:219–226

    Google Scholar 

  • Jönsson M, Ranåker L, Nicolle A, Ljungberg P, Fagerberg T, Hylander S, Jephson T, Lebret K, von Einem J, Hansson L-A, Nilsson P, Balseiro EG, Modenutti BE (2011) Glacial clay affects foraging performance in a Patagonian fish and cladoceran. Hydrobiologia 663:101–108. https://doi.org/10.1007/s10750-010-0557-4

    Article  Google Scholar 

  • Kershaw JA, Clague JJ, Evans SG (2005) Geomorphic and sedimentological signature of a two-phase outburst flood from moraine-dammed Queen Bess Lake, British Columbia, Canada. Earth Surface Processes Landforms: J Br Geomorphol Res Group 30(1):1–25

    Google Scholar 

  • Kirk JTO (1994) Light and photosynthesis in aquatic ecosystems. Cambridge Univ. Press

    Google Scholar 

  • Kirk KL, Gilbert JJ (1990) Suspended clay and the population dynamics of planktonic rotifers and cladocerans. Ecology 71:1741–1755

    Google Scholar 

  • Kitzberger T, Veblen TT (2003) Influences of climate on fire in northern Patagonia, Argentina. In: Fire and climatic change in temperate ecosystems of the western Americas. Springer, pp 296–321

    Google Scholar 

  • Lampert W (1977) Studies on the carbon balance of Daphnia pulex de Geer as related to environmental conditions. IV. Determination of the “threshold” concentration as a factor controlling the abundance of zooplankton species. Arch Hydrobiol Suppl 48:361–368

    CAS  Google Scholar 

  • Laspoumaderes C, Modenutti B, Souza MS, Bastidas Navarro M, Cuassolo F, Balseiro E (2013) Glacier melting and stoichiometric implications for lake community structure: zooplankton species distributions across a natural light gradient. Glob Chang Biol 19:316–326. https://doi.org/10.1111/gcb.12040

    Article  Google Scholar 

  • Laspoumaderes C, Souza MS, Modenutti BE, Balseiro E (2017) Glacier melting and response of Daphnia oxidative stress. J Plankton Res 39(4):675–686. https://doi.org/10.1093/plankt/fbx028

    Article  CAS  Google Scholar 

  • Lattuca M, Ortubay S, Battini M, Barriga J, Cussac V (2007) Presumptive environmental effects on body shape of Aplochiton zebra (Pisces, Galaxiidae) in northern Patagonian lakes. J Appl Ichthyol 23:25–33

    Google Scholar 

  • Litchman E (2000) Growth rates of phytoplankton under fluctuating light. Freshw Biol 44:223–235

    Google Scholar 

  • Litchman E (2003) Competition and coexistence of phytoplankton under fluctuating light: experiments with two cyanobacteria. Aquat Microb Ecol 31:241–248

    Google Scholar 

  • Lliboutry L, Williams R, Ferrigno J (1998) Glaciers of Chile and Argentina. J Geophys Res 1386:1103

    Google Scholar 

  • Marcott SA, Shakun JD, Clark PU, Mix AC (2013) A reconstruction of regional and global temperature for the past 11300 years. Science 339:1198–1201. https://doi.org/10.1126/science.1228026

    Article  CAS  Google Scholar 

  • Marengo JA, Pabón JD, Díaz A, Rosas G, Ávalos G, Montealegre ER, Villacis M, Solman S, Rojas M (2011) Climate change: evidence and future scenarios for the Andean Region. In: Climate change and biodiversity in the tropical Andes. IAI-SCOPE-UNESCO, Paris, pp 110–127

    Google Scholar 

  • Markert B, Pedrozo F, Geller W, Friese K, Korhammer S, Baffico G, Diaz M, Wolfl S (1997) A contribution to the study of the heavy-metal and nutritional element status of some lakes in the southern Andes of Patagonia (Argentina). Sci Total Environ 206:1–15

    CAS  Google Scholar 

  • Masiokas MH, Cara L, Villalba R, Pitte P, Luckman B, Toum E, Christie D, Le Quesne C, Mauget S (2019) Streamflow variations across the Andes (18–55 S) during the instrumental era. Sci Rep 9:1–13

    CAS  Google Scholar 

  • Masiokas MH, Rabatel A, Rivera A, Ruiz L, Pitte P, Ceballos JL, Barcaza G, Soruco A, Bown F, Berthier E, Dussaillant I, MacDonell S (2020) A review of the current state and recent changes of the Andean cryosphere. Front Earth Sci 8. https://doi.org/10.3389/feart.2020.00099

  • Masiokas MH, Villalba R, Luckman BH, Lascano ME, Delgado S, Stepanek P (2008) 20th-century glacier recession and regional hydroclimatic changes in northwestern Patagonia. Global Planet Change 60:85–100

    Google Scholar 

  • Masiokas MH, Villalba R, Luckman BH, Mauget S (2010) Intra-to multidecadal variations of snowpack and streamflow records in the Andes of Chile and Argentina between 30 and 37 S. J Hydrometeorol 11:822–831

    Google Scholar 

  • Mathiasen P, Premoli AC (2010) Out in the cold: genetic variation of Nothofagus pumilio (Nothofagaceae) provides evidence for latitudinally distinct evolutionary histories in austral South America. Mol Ecol 19:371–385. https://doi.org/10.1111/j.1365-294X.2009.04456.x

    Article  CAS  Google Scholar 

  • McDowall R, Pankhurst N (2005) Loss of negative eye-size allometry in a population of Aplochiton zebra (Teleostei: Galaxiidae) from the Falkland Islands. N Z J Zool 32:17–22

    Google Scholar 

  • Menu Marque SA, Marinone MC (1986) El zooplancton de seis lagos del Chubut (Argentina) y sus probables relaciones con la ictiofauna y algunos factores ambientales (The Zooplancton of six lakes from Chubut (Argentina) and their possible relationship with ichthyofauna and some environmental factors). In: Vila I, Fagetti E (eds) Trabajos presentados al taller internacional sobre ecología y manejo de peces en lagos y embalses. Santiago de Chile, 5-10 nov. 1984. FAO, Roma, pp 90–114

    Google Scholar 

  • Mitra A, Flynn KJ, Burkholder JM, Berge T, Calbet A, Raven JA, Granéli E, Glibert PM, Hansen PJ, Stoecker DK, Thingstad F, Tillmann U, Våge S, Wilken S, Zubkov MV (2014) The role of mixotrophic protists in the biological carbon pump. Biogeosciences 11(4):995–1005. https://doi.org/10.5194/bg-11-995-2014

    Article  CAS  Google Scholar 

  • Modenutti B, Bastidas Navarro M, Martyniuk N, Balseiro E (2018a) Melting of clean and debris-rich ice differentially affect nutrients, dissolved organic matter and bacteria respiration in the early ontogeny of the newly formed proglacial Ventisquero Negro Lake (Patagonia Argentina). Freshw Biol 63:1341–1351. https://doi.org/10.1111/fwb.13161

    Article  CAS  Google Scholar 

  • Modenutti B, Wolinski L, Souza MS, Balseiro EG (2018b) When eating a prey is risky: implications for predator diel vertical migration. Limnol Oceanogr 63:939–950. https://doi.org/10.1002/lno.10681

    Article  Google Scholar 

  • Modenutti BE, Balseiro EG (2002) Mixotrophic ciliates in an Andean lake: dependence on light and prey of an Ophrydium naumanni population. Freshw Biol 47(1):121–128

    Google Scholar 

  • Modenutti BE, Balseiro EG (2018) Preface: Andean Patagonian lakes as sensors of global change. Hydrobiologia 816(1):1–2. https://doi.org/10.1007/s10750-018-3622-z

    Article  Google Scholar 

  • Modenutti BE, Balseiro EG, Bastidas Navarro M, Laspoumaderes C, Souza MS, Cuassolo F (2013a) Environmental changes affecting light climate in oligotrophic mountain lakes: the deep chlorophyll maxima as a sensitive variable. Aquat Sci 75(3):361–371. https://doi.org/10.1007/s00027-012-0282-3

    Article  CAS  Google Scholar 

  • Modenutti BE, Balseiro EG, Bastidas Navarro MA, Lee ZM, Souza MS, Corman JR, Elser JJ (2016) Effects of Volcanic Pumice inputs on microbial community composition and dissolved C/P ratios in lake waters: an experimental approach. Microb Ecol 71(1):18–28. https://doi.org/10.1007/s00248-015-0707-3

    Article  CAS  Google Scholar 

  • Modenutti BE, Balseiro EG, Callieri C, Bertoni R (2008) Light versus food supply as factors modulating niche partitioning in two pelagic mixotrophic ciliates. Limnol Oceanogr 53(2):446–455

    Google Scholar 

  • Modenutti BE, Balseiro EG, Callieri C, Bertoni R, Queimaliños CP (2005) Effect of UV-B and different PAR intensities on the primary production of the mixotrophic planktonic ciliate Stentor araucanus. Limnol Oceanogr 50(3):864–871

    Google Scholar 

  • Modenutti BE, Balseiro EG, Callieri C, Queimaliños C, Bertoni R (2004) Increase in photosynthetic efficiency as a strategy of planktonic organisms exploiting deep lake layers. Freshw Biol 49(2):160–169

    CAS  Google Scholar 

  • Modenutti BE, Balseiro EG, Elser JJ, Bastidas Navarro M, Cuassolo F, Laspoumaderes C, Souza MS, Dıaz Villanueva V (2013b) Effect of volcanic eruption on nutrients, light, and phytoplankton in oligotrophic lakes. Limnol Oceanogr 58(4):1165–1175. https://doi.org/10.4319/lo.2013.58.4.0000

    Article  Google Scholar 

  • Modenutti BE, Balseiro EG, Moeller R (1998) Vertical distribution and resistance to ultraviolet radiation of a planktonic ciliate Stentor araucanus. Verhandlungen Internationale Vereinigung Limnologie 26:1636–1640

    Google Scholar 

  • Modenutti BE, Perez GL, Balseiro EG, Queimaliños CP (2000) Relationship between light availability, chlorophyll a and total suspended solid in a glacial lake of South Andes. Verh Int Verein Limnol 27(5):2648–2651

    CAS  Google Scholar 

  • Modenutti BE, Queimaliños C, Balseiro EG, Reissig M (2003) Impact of different zooplankton structures on the microbial food web of a South Andean oligotrophic lake. Acta Oecol 24(Suppl 1):289–298

    Google Scholar 

  • Morris DP, Zagarese H, Williamson CE, Balseiro EG, Hargreaves BR, Modenutti BE, Moeller R, Queimaliños C (1995) The attenuation of solar UV radiation in lakes and the role of dissolved organic carbon. Limnol Oceanogr 40(8):1381–1391

    CAS  Google Scholar 

  • Neukom R, Barboza LA, Erb MP, Shi F, Emile-Geay J, Evans MN, Franke J, Kaufman DS, Lücke L, Rehfeld K (2019) Consistent multi-decadal variability in global temperature reconstructions and simulations over the Common Era. Nat Geosci 12(8):643

    Google Scholar 

  • Paruelo JM, Beltran A, Jobbágy E, Sala O, Golluscio R (1998) The climate of Patagonia: general patterns and controls on biotic processes. Ecol Austral 8(2):85–101

    Google Scholar 

  • Paul F, Mölg N (2014) Hasty retreat of glaciers in northern Patagonia from 1985 to 2011. J Glaciol 60(224):1033–1043. https://doi.org/10.3189/2014JoG14J104

    Article  Google Scholar 

  • Pedrozo F, Chillrud S, Temporetti P, Díaz M (1993) Chemical composition and nutrient limitation in rivers and lakes of northern Patagonian Andes (39.5°-42° S; 71° W) (Rep. Argentina). Verh Int Verein Limnol 25:205–214

    Google Scholar 

  • Pereyra FX, Bouza P (2019) Soils from the Patagonian region. In: The soils of Argentina. World Soils Book Series, pp 101–121. https://doi.org/10.1007/978-3-319-76853-3_7

    Chapter  Google Scholar 

  • Pérez G, Queimaliños C, Balseiro EG, Modenutti BE (2007) Phytoplankton absorption spectra along the water column in deep North Patagonian Andean lakes (Argentina): Limnology of Temperate South America. Limnologica 37(1):3–16

    Google Scholar 

  • Pérez GL, Queimaliños CP, Modenutti BE (2002) Light climate and plankton in the deep chlorophyll maxima in North Patagonian Andean lakes. J Plankton Res 24(6):591–599

    Google Scholar 

  • Pessacg N, Flaherty S, Solman S, Pascual M (2020) Climate change in northern Patagonia: critical decrease in water resources. Theor Appl Climatol:1–16

    Google Scholar 

  • Poveda G, Espinoza JC, Zuluaga MD, Solman SA, Garreaud Salazar R, van Oevelen PJ (2020) High impact weather events in the Andes. Front Earth Sci 8:162. https://doi.org/10.3389/feart.2020.00162

    Article  Google Scholar 

  • Quéguiner B, Legendre L (1986) Phytoplankton photosynthetic adaptation to high frequency light fluctuations simulating those induced by sea surface waves. Mar Biol 90(4):483–491

    Google Scholar 

  • Queimaliños C, Reissig M, Perez GL, Soto Cardenas C, Gerea M, Garcia PE, Garcia D, Dieguez MC (2019) Linking landscape heterogeneity with lake dissolved organic matter properties assessed through absorbance and fluorescence spectroscopy: Spatial and seasonal patterns in temperate lakes of Southern Andes (Patagonia, Argentina). Sci Total Environ 686:223–235. https://doi.org/10.1016/j.scitotenv.2019.05.396

    Article  CAS  Google Scholar 

  • Quirós R (1988) Relationship between air temperature, depth, nutrient and chlorophyll in 103 Argentinian lakes. Verhandlungen Internationale Vereinigung Limnologie 23:647–658

    Google Scholar 

  • Quirós R (1997) Classification and state of the environment of the Argentinean lakes. In: Study report for the lake environment conservation in developing countries: Argentina (Ed. ILEC Workshop on Better Management of the Lakes of Argentina), ILEC Workshop on Better Management of the Lakes of Argentina, pp 29–50

    Google Scholar 

  • Quirós R, Drago E (1999) The environmental state of Argentinean lakes: an overview. Lakes Reserv Res Manag 4(1-2):55–64

    Google Scholar 

  • Reissig M, Modenutti BE, Balseiro EG, Queimaliños C (2004) The role of the Predaceous Copepod Parabroteas Sarsi in the Pelagic Food Web of a large deep Andean lake. Hydrobiologia 524(1):67–77

    Google Scholar 

  • Richter A, Marderwald E, Hormaechea JL, Mendoza L, Perdomo R, Connon G, Scheinert M, Horwath M, Dietrich R (2016) Lake-level variations and tides in Lago Argentino, Patagonia: insights from pressure tide gauge records. J Limnol 75(1). https://doi.org/10.4081/jlimnol.2015.1189

  • Rivera JA, Araneo DC, Penalba OC, Villalba R (2018) Regional aspects of streamflow droughts in the Andean rivers of Patagonia, Argentina. Links with large-scale climatic oscillations. Hydro Res 49(1):134–149

    Google Scholar 

  • Roe G, Baker M, Herla F (2017) Centennial glacier retreat as categorical evidence of regional climate change. Nat Geosci (10):95–99. https://doi.org/10.1038/ngeo2863

  • Ruiz L, Berthier E, Masiokas HM, Pitte P, Villalba R (2015) First surface velocity maps for glaciers of Monte Tronador, North Patagonian Andes, derived from sequential Pléiades satellite images. J Glaciol 61(229):908–922. https://doi.org/10.3189/2015JoG14J134

    Article  Google Scholar 

  • Ruiz L, Berthier E, Viale M, Pitte P, Masiokas MH (2017) Recent geodetic mass balance of Monte Tronador glaciers, northern Patagonian Andes. Cryosphere 11(1):619–634. https://doi.org/10.5194/tc-11-619-2017

    Article  Google Scholar 

  • Schenone L, Balseiro EG, Bastidas Navarro M, Modenutti BE (2020) Modelling the consequence of glacier retreat on mixotrophic nanoflagellate bacterivory: a Bayesian approach. Oikos 129(8):1216–1228. https://doi.org/10.1111/oik.07170

    Article  Google Scholar 

  • Sharples JC, Moore M, Rippeth TP, Holligan PM, Hydes DJ, Fisher NR, Simpson JH (2001) Phytoplankton distribution and survival in the thermocline. Limnol Oceanogr 46(3):486–496

    Google Scholar 

  • Shugar DH, Burr A, Haritashya UK, Kargel JS, Watson CS, Kennedy MC, Bevington AR, Betts RA, Harrison S, Strattman K (2020) Rapid worldwide growth of glacial lakes since 1990. Nat Clim Change 10(10):939–945. https://doi.org/10.1038/s41558-020-0855-4

    Article  CAS  Google Scholar 

  • Smith DW, Cooper SD (1982) Competition among cladocera. Ecology 63(4):1004–1015

    Google Scholar 

  • Sommaruga R, Kandolf G (2014) Negative consequences of glacial turbidity for the survival of freshwater planktonic heterotrophic flagellates. Sci Rep 4:4113. https://doi.org/10.1038/srep04113

    Article  CAS  Google Scholar 

  • Sommer U (1989) The role of competition for resources in phytoplankton succession. In: Sommer U (ed) Plankton ecology: succession in plankton communities. Springer-Verlag, Berlin, pp 57–106

    Google Scholar 

  • Souza MS, Modenutti BE, Carrillo P, Villar-Argaiz M, Medina-Sánchez JM, Bullejos F, Balseiro EG (2010) Stoichiometric dietary constraints influence the response of copepods to ultraviolet radiation-induced oxidative stress. Limnol Oceanogr 55(3):1024–1032

    CAS  Google Scholar 

  • SRL SET (2018) Software de Procesamiento de Imágenes (SoPI) (Software for Image Processing (SoPI)). 3.0 edn. Comisión Nacional de Actividades Espaciales (CONAE) de la República Argentina, https://www.argentina.gob.ar/ciencia/conae/unidad-educacion/software/sopi

  • Sterner RW, Elser JJ (2002) Ecological stoichiometry. The biology of elements from molecules to the biosphere. Princeton University Press, Princeton

    Google Scholar 

  • Sterner RW, Elser JJ, Fee EJ, Guildford SJ, Chrzanowski TH (1997) The light:nutrient ratio in lakes: the balance of energy and materials affects ecosystem structure and process. Am Nat 150(6):663–684

    CAS  Google Scholar 

  • Stomp M, Huisman J, Stal LJ, Matthijs HC (2007a) Colorful niches of phototrophic microorganisms shaped by vibrations of the water molecule. ISME J 1(4):271–282. https://doi.org/10.1038/ismej.2007.59

    Article  CAS  Google Scholar 

  • Stomp M, Huisman J, Voros L, Pick FR, Laamanen M, Haverkamp T, Stal LJ (2007b) Colorful coexistence of red and green picocyanobacteria in lakes and seas. Ecol Lett 10(4):290–298

    Google Scholar 

  • Stuart-Smith RD, Stuart-Smith JF, White RWG, Barmuta LA (2007) The impact of an introduced predator on a threatened galaxiid fish is reduced by the availability of complex habitats. Freshw Biol 52(8):1555–1563

    Google Scholar 

  • Tartarotti B, Baffico G, Temporetti P, Zagarese HE (2004) Mycosporine-like amino acids in planktonic organisms living under different UV exposure conditions in Patagonian lakes. J Plankton Res 26(7):753–762. https://doi.org/10.1093/plankt/fbh073

    Article  CAS  Google Scholar 

  • Thomasson K (1959) Nahuel Huapi: Plankton of some lakes in an Argentine national park, with notes on terrestrial vegetation. Acta Phytogeogr Suec 42:1–83

    Google Scholar 

  • Thomasson K (1963) Araucanian lakes. Acta Phytogeogr Suec 47:1–139

    Google Scholar 

  • Trauth MH, Alonso RA, Haselton KR, Hermanns RL, Strecker MR (2000) Climate change and mass movements in the NW Argentine Andes. Earth Planet Sci Lett 179(2):243–256

    CAS  Google Scholar 

  • Utne ACW (1997) The effect of turbidity and illumination on the reaction distance and search time of the marine planktivore Gobiusculus flavescens. J Fish Biol 50:926–938

    Google Scholar 

  • Viale M, Bianchi E, Cara L, Ruiz LE, Villalba R, Pitte P, Masiokas M, Rivera J, Zalazar L (2019) Contrasting climates at both sides of the Andes in Argentina and Chile. Front Environ Sci 7. https://doi.org/10.3389/fenvs.2019.00069

  • Viale M, Valenzuela R, Garreaud RD, Ralph FM (2018) Impacts of atmospheric rivers on precipitation in southern South America. J Hydrometeorol 19(10):1671–1687

    Google Scholar 

  • Villafañe VE, Buma AGJ, Boelen P, Helbling EW (2004) Solar UVR-induced DNA damage and inhibition of photosynthesis in phytoplankton from Andean lakes of Argentina. Arch Hydrobiol 161(2):245–266

    Google Scholar 

  • Villalba R, Lara A, Boninsegna JA, Masiokas M, Delgado S, Aravena JC, Roig FA, Schmelter A, Wolodarsky A, Ripalta A (2003) Large-scale temperature changes across the southern Andes: 20th-century variations in the context of the past 400 years. In: Climate variability and change in high elevation regions: past, present & future. Springer, pp 177–232

    Google Scholar 

  • Vinyard GL, O’Brien WJ (1976) Effects of light and turbidity on the reactive distance of bluegill (Lepomis macrochirus). J Fish Board Canada 33(12):2845–2849

    Google Scholar 

  • Waibel A, Peter H, Sommaruga R (2019) Importance of mixotrophic flagellates during the ice-free season in lakes located along an elevational gradient. Aquat Sci 81(3). https://doi.org/10.1007/s00027-019-0643-2

  • Wilson R, Glasser NF, Reynolds JM, Harrison S, Anacona PI, Schaefer M, Shannon S (2018) Glacial lakes of the Central and Patagonian Andes. Global Planet Change 162:275–291. https://doi.org/10.1016/j.gloplacha.2018.01.004

    Article  Google Scholar 

  • Wolinski L, Laspoumaderes C, Bastidas Navarro M, Modenutti BE, Balseiro EG (2013) The susceptibility of cladocerans in North Andean Patagonian lakes to volcanic ashes. Freshwat Biol 58(9):1878–1888. https://doi.org/10.1111/fwb.12176

    Article  CAS  Google Scholar 

  • Worni R, Stoffel M, Huggel C, Volz C, Casteller A, Luckman B (2012) Analysis and dynamic modeling of a moraine failure and glacier lake outburst flood at Ventisquero Negro, Patagonian Andes (Argentina). J Hydrol 444-445:134–145. https://doi.org/10.1016/j.jhydrol.2012.04.013

    Article  Google Scholar 

  • Zagarese HE, Ferraro M, Queimaliños C, Diéguez MC, Suárez DA, Llames ME (2017) Patterns of dissolved organic matter across the Patagonian landscape: a broad-scale survey of Chilean and Argentine lakes. Mar Freshw Res 68(12). https://doi.org/10.1071/mf17023

Download references

Acknowledgments

This work was supported by FONCyT PICT2017-1940, PICT2018-1563, PICT2019-0950, CONICET PUE2016-0008, and UNComahue B236.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esteban Balseiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Balseiro, E., Modenutti, B., Bastidas Navarro, M., Martyniuk, N., Schenone, L., Laspoumaderes, C. (2022). North Patagonian Andean Deep Lakes: Impact of Glacial Recession and Volcanic Eruption. In: Mataloni, G., Quintana, R.D. (eds) Freshwaters and Wetlands of Patagonia. Natural and Social Sciences of Patagonia. Springer, Cham. https://doi.org/10.1007/978-3-031-10027-7_3

Download citation

Publish with us

Policies and ethics