Skip to main content

Advertisement

Log in

Cardiometabolic-based chronic disease: adiposity and dysglycemia drivers of heart failure

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Heart failure (HF) is a complex clinical syndrome, associated with high rates of mortality, hospitalization, and impairment of quality of life. Obesity and type 2 diabetes are major cardiometabolic drivers, represented as distinct stages of adiposity- and dysglycemia-based chronic disease (ABCD, DBCD), respectively, and leading to cardiometabolic-based chronic disease (CMBCD). This review focuses on one aspect of the CMBCD model: how ABCD and DBCD influence genesis and progression of HF phenotypes. Specifically, the relationships of ABCD and DBCD stages with structural and functional heart disease, HF risk, and outcomes in overt HF are detailed. Also, evidence-based lifestyle, pharmacological, and procedural interventions that promote or reverse cardiac remodeling and outcomes in individuals at risk or with HF are discussed. In summary, driver-based chronic disease models for individuals at risk or with HF can expose prevention targets for more comprehensive interventions to improve clinical outcomes. Future randomized trials that investigate structured lifestyle, pharmacological, and procedural therapies specifically tailored for the CMBCD model are needed to develop personalized care plans to decrease HF susceptibility and improve outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M et al (2021) 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 42(36):3599–3726

    Article  CAS  Google Scholar 

  2. Aune D, Sen A, Norat T, Janszky I, Romundstad P, Tonstad S et al (2016) Body mass index, abdominal fatness, and heart failure incidence and mortality: a systematic review and dose-response meta-analysis of prospective studies. Circulation 133(7):639–649

    Article  Google Scholar 

  3. Ohkuma T, Komorita Y, Peters SAE, Woodward M (2019) Diabetes as a risk factor for heart failure in women and men: a systematic review and meta-analysis of 47 cohorts including 12 million individuals. Diabetologia 62(9):1550–1560

    Article  Google Scholar 

  4. Hruby A, Hu FB (2015) The epidemiology of obesity: a big picture. Pharmacoeconomics 33(7):673–689

    Article  Google Scholar 

  5. Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N et al (2019) Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the international diabetes federation diabetes atlas, 9th edition. Diabetes Res Clin Pract 157:107843

    Article  Google Scholar 

  6. Mechanick JI, Hurley DL, Garvey WT (2017) Adiposity-based chronic disease as a new diagnostic term: the american association of clinical endocrinologists and american college of endocrinology position statement. Endocr Pract 23(3):372–378

    Article  Google Scholar 

  7. Mechanick JI, Garber AJ, Grunberger G, Handelsman Y, Garvey WT (2018) Dysglycemia-based chronic disease: an american association of clinical endocrinologists position statement. Endocr Pract 24(11):995–1011

    Article  Google Scholar 

  8. Mechanick JI, Farkouh ME, Newman JD, Garvey WT (2020) Cardiometabolic-based chronic disease, addressing knowledge and clinical practice gaps: JACC state-of-the-art review. J Am Coll Cardiol 75(5):539–555

    Article  Google Scholar 

  9. Mechanick JI, Farkouh ME, Newman JD, Garvey WT (2020) Cardiometabolic-based chronic disease, adiposity and dysglycemia drivers. J Am Coll Cardiol 75(5):525–538

    Article  CAS  Google Scholar 

  10. Opio J, Croker E, Odongo GS, Attia J, Wynne K, McEvoy M (2020) Metabolically healthy overweight/obesity are associated with increased risk of cardiovascular disease in adults, even in the absence of metabolic risk factors: a systematic review and meta-analysis of prospective cohort studies. Obes Rev 21(12):e13127

    Article  Google Scholar 

  11. Khan SS, Shah SJ, Colangelo LA, Panjwani A, Liu K, Lewis CE et al (2018) Association of patterns of change in adiposity with diastolic function and systolic myocardial mechanics from early adulthood to middle age: the coronary artery risk development in young adults study. J Am Soc Echocardiogr 31(12):1261-1269.e8

    Article  Google Scholar 

  12. Reis JP, Allen N, Gibbs BB, Gidding SS, Lee JM, Lewis CE et al (2014) Association of the degree of adiposity and duration of obesity with measures of cardiac structure and function: the CARDIA study. Obesity (Silver Spring) 22(11):2434–2440

    Article  Google Scholar 

  13. Selvaraj S, Martinez EE, Aguilar FG, Kim K-YA, Peng J, Sha J et al (2016) Association of central adiposity with adverse cardiac mechanics: findings from the hypertension genetic epidemiology network study. Circ Cardiovasc Imaging 9(6):e004396

    Article  Google Scholar 

  14. Fontes-Carvalho R, Gonçalves A, Severo M, Lourenço P, Rocha Gonçalves F, Bettencourt P et al (2015) Direct, inflammation-mediated and blood-pressure-mediated effects of total and abdominal adiposity on diastolic function: EPIPorto study. Int J Cardiol 15(191):64–70

    Article  Google Scholar 

  15. Levitan EB, Yang AZ, Wolk A, Mittleman MA (2009) Adiposity and incidence of heart failure hospitalization and mortality: a population-based prospective study. Circ Heart Fail 2(3):202–208

    Article  Google Scholar 

  16. Reis JP, Allen N, Gunderson EP, Lee JM, Lewis CE, Loria CM et al (2015) Excess body mass index- and waist circumference-years and incident cardiovascular disease: the CARDIA study. Obesity (Silver Spring) 23(4):879–885

    Article  Google Scholar 

  17. Iacobellis G (2015) Local and systemic effects of the multifaceted epicardial adipose tissue depot. Nat Rev Endocrinol 11(6):363–371

    Article  CAS  Google Scholar 

  18. Koepp KE, Obokata M, Reddy YNV, Olson TP, Borlaug BA (2020) Hemodynamic and functional impact of epicardial adipose tissue in heart failure with preserved ejection fraction. JACC Heart Fail 8(8):657–666

    Article  Google Scholar 

  19. Oikonomou EK, Antoniades C (2019) The role of adipose tissue in cardiovascular health and disease. Nat Rev Cardiol 16(2):83–99

    Article  Google Scholar 

  20. Elsenberg E, McElhinney PA, Commandeur F, Chen X, Cadet S, Goeller M et al (2020) Deep learning-based quantification of epicardial adipose tissue volume and attenuation predicts major adverse cardiovascular events in asymptomatic subjects. circulation cardiovascular imaging [Internet]. [cited 2021 Sep 19];13(2). Available from: https://pubmed-ncbi-nlm-nih.ez24.periodicos.capes.gov.br/32063057/

  21. Iacobellis G (2009) Epicardial and pericardial fat: close, but very different. Obesity (Silver Spring) 17(4):625; author reply 626–627

  22. Kim J-S, Kim SW, Lee JS, Lee SK, Abbott R, Lee KY et al (2021) Association of pericardial adipose tissue with left ventricular structure and function: a region-specific effect?. Cardiovasc Diabetol 20(1):26

    Article  CAS  Google Scholar 

  23. Schwenzer NF, Springer F, Schraml C, Stefan N, Machann J, Schick F (2009) Non-invasive assessment and quantification of liver steatosis by ultrasound, computed tomography and magnetic resonance. J Hepatol 51(3):433–445

    Article  Google Scholar 

  24. Simon TG, Roelstraete B, Hagström H, Sundström J, Ludvigsson JF (2021) Non-alcoholic fatty liver disease and incident major adverse cardiovascular events: results from a nationwide histology cohort. Gut [Internet]. [cited 2021 Sep 19]; Available from: https://pubmed-ncbi-nlm-nih.ez24.periodicos.capes.gov.br/34489307/

  25. Chiu LS, Pedley A, Massaro JM, Benjamin EJ, Mitchell GF, McManus DD et al (2020) The association of non-alcoholic fatty liver disease and cardiac structure and function-framingham heart study. Liver international : official journal of the international association for the study of the liver [Internet]. Liver Int 40(10). Available from: https://pubmed-ncbi-nlm-nih.ez24.periodicos.capes.gov.br/32654390/

  26. VanWagner LB, Wilcox JE, Ning H, Lewis CE, Carr JJ, Rinella ME et al (2020) Longitudinal association of non-alcoholic fatty liver disease with changes in myocardial structure and function: the CARDIA study. J Am Heart Assoc 9(4):e014279

    Article  Google Scholar 

  27. Styczynski G, Kalinowski P, Michałowski Ł, Paluszkiewicz R, Ziarkiewicz-Wróblewska B, Zieniewicz K et al (2021) Cardiac morphology, function, and hemodynamics in patients with morbid obesity and nonalcoholic steatohepatitis. J Am Heart Assoc 10(8):e017371

    Article  CAS  Google Scholar 

  28. Lee Y, Kim KJ, eun Yoo M, Kim G, Yoon H, Jo K et al (2018) Association of non-alcoholic steatohepatitis with subclinical myocardial dysfunction in non-cirrhotic patients. J Hepatol 68(4):764–772

    Article  Google Scholar 

  29. Simon TG, Bamira DG, Chung RT, Weiner RB, Corey KE (2017) Nonalcoholic steatohepatitis is associated with cardiac remodeling and dysfunction. Obesity (Silver Spring) 25(8):1313–1316

    Article  Google Scholar 

  30. Haykowsky MJ, Kouba EJ, Brubaker PH, Nicklas BJ, Eggebeen J, Kitzman DW (2014) Skeletal muscle composition and its relation to exercise intolerance in older patients with heart failure and preserved ejection fraction. Am J Cardiol 113(7):1211–1216

    Article  Google Scholar 

  31. Kitzman DW, Nicklas B, Kraus WE, Lyles MF, Eggebeen J, Morgan TM et al (2014) Skeletal muscle abnormalities and exercise intolerance in older patients with heart failure and preserved ejection fraction. Am J Physiol Heart Circ Physiol 306(9):H1364-1370

    Article  CAS  Google Scholar 

  32. Molina AJA, Bharadwaj MS, Van Horn C, Nicklas BJ, Lyles MF, Eggebeen J et al (2016) Skeletal muscle mitochondrial content, oxidative capacity, and Mfn2 expression are reduced in older patients with heart failure and preserved ejection fraction and are related to exercise intolerance. JACC Heart Fail 4(8):636–645

    Article  Google Scholar 

  33. Haykowsky MJ, Brubaker PH, John JM, Stewart KP, Morgan TM, Kitzman DW (2011) Determinants of exercise intolerance in elderly heart failure patients with preserved ejection fraction. J Am Coll Cardiol 58(3):265–274

    Article  Google Scholar 

  34. Costa RM, Neves KB, Tostes RC, Lobato NS (2018) Perivascular adipose tissue as a relevant fat depot for cardiovascular risk in obesity. Front Physiol 9:253

    Article  Google Scholar 

  35. Chait A, den Hartigh LJ (2020) Adipose tissue distribution, inflammation and its metabolic consequences, including diabetes and cardiovascular disease. Front Cardiovasc Med 25(7):22

    Article  Google Scholar 

  36. Sebo ZL, Rendina-Ruedy E, Ables GP, Lindskog DM, Rodeheffer MS, Fazeli PK et al (2019) Bone marrow adiposity: basic and clinical implications. Endocr Rev 40(5):1187–1206

    Article  Google Scholar 

  37. Singh RG, Yoon HD, Wu LM, Lu J, Plank LD, Petrov MS (2017) Ectopic fat accumulation in the pancreas and its clinical relevance: a systematic review, meta-analysis, and meta-regression. Metabolism 69:1–13

    Article  CAS  Google Scholar 

  38. D’Marco L, Puchades MJ, Panizo N, Romero-Parra M, Gandía L, Giménez-Civera E et al (2021) Cardiorenal fat: a cardiovascular risk factor with implications in chronic kidney disease. Front Med 8:733

    Google Scholar 

  39. Ha EE, Bauer RC (2018) Emerging roles for adipose tissue in cardiovascular disease. Arterioscler Thromb Vasc Biol 38(8):e137–e144

    Article  CAS  Google Scholar 

  40. Narumi T, Watanabe T, Kadowaki S, Kinoshita D, Yokoyama M, Honda Y et al (2014) Impact of serum omentin-1 levels on cardiac prognosis in patients with heart failure. Cardiovasc Diabetol 23(13):84

    Article  Google Scholar 

  41. Anthony SR, Guarnieri AR, Gozdiff A, Helsley RN, Phillip Owens A, Tranter M (2019) Mechanisms linking adipose tissue inflammation to cardiac hypertrophy and fibrosis. Clin Sci (Lond) 133(22):2329–2344

    Article  CAS  Google Scholar 

  42. Garvey WT, Mechanick JI (2020) Proposal for a scientifically-correct and medically-actionable disease classification system (ICD) for obesity. Obesity (Silver Spring) 28(3):484–492

    Article  Google Scholar 

  43. Elagizi A, Carbone S, Lavie CJ, Mehra MR, Ventura HO (2020) Implications of obesity across the heart failure continuum. Prog Cardiovasc Dis 63(5):561–569

    Article  Google Scholar 

  44. Karason K, Jamaly S (2020) Heart failure development in obesity: mechanistic pathways. Eur Heart J 41(36):3485

    Article  Google Scholar 

  45. Bozkurt B, Coats AJ, Tsutsui H, Abdelhamid M, Adamopoulos S, Albert N et al (2021) Universal definition and classification of heart failure: a report of the heart failure society of america, heart failure association of the european society of cardiology, japanese heart failure society and writing committee of the universal definition of heart failure. J Card Fail S1071–9164(21):00050–00056

    Google Scholar 

  46. Carbone S, Lavie CJ, Elagizi A, Arena R, Ventura HO (2020) The impact of obesity in heart failure. Heart Fail Clin 16(1):71–80

    Article  Google Scholar 

  47. Sharma A, Lavie CJ, Borer JS, Vallakati A, Goel S, Lopez-Jimenez F et al (2015) Meta-analysis of the relation of body mass index to all-cause and cardiovascular mortality and hospitalization in patients with chronic heart failure. Am J Cardiol 115(10):1428–1434

    Article  Google Scholar 

  48. Clark AL, Fonarow GC, Horwich TB (2011) Waist circumference, body mass index, and survival in systolic heart failure: the obesity paradox revisited. J Card Fail 17(5):374–380

    Article  Google Scholar 

  49. Streng KW, Voors AA, Hillege HL, Anker SD, Cleland JG, Dickstein K et al (2018) Waist-to-hip ratio and mortality in heart failure. Eur J Heart Fail 20(9):1269–1277

    Article  Google Scholar 

  50. Gao F, Wan J, Xu B, Wang X, Lin X, Wang P (2020) Trajectories of waist-to-hip ratio and adverse outcomes in heart failure with mid-range ejection fraction. Obes Facts 13(3):344–357

    Article  Google Scholar 

  51. Tsujimoto T, Kajio H (2017) Abdominal obesity is associated with an increased risk of all-cause mortality in patients with HFpEF. J Am Coll Cardiol 70(22):2739–2749

    Article  Google Scholar 

  52. Mechanick JI (2013) “What if” being overweight was good for you?. Endocr Pract 19(1):166–168

    Article  Google Scholar 

  53. Nagarajan V, Cauthen CA, Starling RC, Tang WHW (2013) Prognosis of morbid obesity patients with advanced heart failure. Congest Heart Fail 19(4):160–164

    Article  CAS  Google Scholar 

  54. Myers J, Kokkinos P, Chan K, Dandekar E, Yilmaz B, Nagare A et al (2017) Cardiorespiratory fitness and reclassification of risk for incidence of heart failure: the veterans exercise testing study. Circ Heart Fail 6:e003780

    Article  Google Scholar 

  55. Kokkinos P, Faselis C, Franklin B, Lavie CJ, Sidossis L, Moore H et al (2019) Cardiorespiratory fitness, body mass index and heart failure incidence. Eur J Heart Fail 21(4):436–444

    Article  Google Scholar 

  56. Shah RV, Abbasi SA, Heydari B, Rickers C, Jacobs DR, Wang L et al (2013) Insulin resistance, subclinical left ventricular remodeling, and the obesity paradox: MESA (multi-ethnic study of atherosclerosis). J Am Coll Cardiol 61(16):1698–1706

    Article  CAS  Google Scholar 

  57. Fontes-Carvalho R, Ladeiras-Lopes R, Bettencourt P, Leite-Moreira A, Azevedo A (2015) Diastolic dysfunction in the diabetic continuum: association with insulin resistance, metabolic syndrome and type 2 diabetes. Cardiovasc Diabetol 13(14):4

    Article  Google Scholar 

  58. Banerjee D, Biggs ML, Mercer L, Mukamal K, Kaplan R, Barzilay J et al (2013) Insulin resistance and risk of incident heart failure: cardiovascular health study. Circ Heart Fail 6(3):364–370

    Article  CAS  Google Scholar 

  59. Vardeny O, Gupta DK, Claggett B, Burke S, Shah A, Loehr L et al (2013) Insulin resistance and incident heart failure the ARIC study (atherosclerosis risk in communities). JACC Heart Fail 1(6):531–536

    Article  Google Scholar 

  60. Rooney MR, Rawlings AM, Pankow JS, Echouffo Tcheugui JB, Coresh J, Sharrett AR et al (2021) Risk of progression to diabetes among older adults with prediabetes. JAMA Intern Med 181(4):511–519

    Article  CAS  Google Scholar 

  61. Michel A, Mando R, Waheed MA-A, Halalau A, Karabon P (2021) Prediabetes associated with an increase in major adverse cardiovascular events. J Am Coll Cardiol 77(18_Supplement_2):14–14

    Article  Google Scholar 

  62. Cai X, Liu X, Sun L, He Y, Zheng S, Zhang Y et al (2021) Prediabetes and the risk of heart failure: a meta-analysis. Diabetes Obes Metab 23(8):1746–1753

    Article  Google Scholar 

  63. Milwidsky A, Maor E, Kivity S, Berkovitch A, Zekry SB, Tenenbaum A et al (2015) Impaired fasting glucose and left ventricular diastolic dysfunction in middle-age adults: a retrospective cross-sectional analysis of 2971 subjects. Cardiovasc Diabetol 14(1):119

    Article  Google Scholar 

  64. Fox ER, Sarpong DF, Cook JC, Samdarshi TE, Nagarajarao HS, Liebson PR et al (2011) The relation of diabetes, impaired fasting blood glucose, and insulin resistance to left ventricular structure and function in african americans. Diabetes Care 34(2):507–509

    Article  Google Scholar 

  65. Stahrenberg R, Edelmann F, Mende M, Kockskämper A, Düngen HD, Scherer M et al (2010) Association of glucose metabolism with diastolic function along the diabetic continuum. Diabetologia 53(7):1331–1340

    Article  CAS  Google Scholar 

  66. Mai L, Wen W, Qiu M, Liu X, Sun L, Zheng H et al (2021) Association between prediabetes and adverse outcomes in heart failure. Diabetes Obes Metab

  67. Kodama S, Fujihara K, Horikawa C, Sato T, Iwanaga M, Yamada T et al (2020) Diabetes mellitus and risk of new-onset and recurrent heart failure: a systematic review and meta-analysis. ESC Heart Fail 7(5):2146–2174

    Article  Google Scholar 

  68. Echouffo-Tcheugui JB, Zhang S, Florido R, Hamo C, Pankow JS, Michos ED et al (2021) Duration of diabetes and incident heart failure: the ARIC (atherosclerosis risk in communities) study. JACC Heart Fail 9(8):594–603

    Article  Google Scholar 

  69. Ormazabal V, Nair S, Elfeky O, Aguayo C, Salomon C, Zuñiga FA (2018) Association between insulin resistance and the development of cardiovascular disease. Cardiovasc Diabetol 17(1):122

    Article  CAS  Google Scholar 

  70. Marwick TH, Ritchie R, Shaw JE, Kaye D (2018) Implications of underlying mechanisms for the recognition and management of diabetic cardiomyopathy. J Am Coll Cardiol 71(3):339–351

    Article  Google Scholar 

  71. Dunlay SM, Givertz MM, Aguilar D, Allen LA, Chan M, Desai AS et al (2019) Type 2 diabetes mellitus and heart failure: a scientific statement from the american heart association and the heart failure society of america: this statement does not represent an update of the 2017 ACC/AHA/HFSA heart failure guideline update. Circulation 140(7):e294-324

    Article  CAS  Google Scholar 

  72. Roos CJ, Scholte AJ, Kharagjitsingh AV, Bax JJ, Delgado V (2014) Changes in multidirectional LV strain in asymptomatic patients with type 2 diabetes mellitus: a 2-year follow-up study. Eur Heart J Cardiovasc Imaging 15(1):41–47

    Article  Google Scholar 

  73. Dauriz M, Mantovani A, Bonapace S, Verlato G, Zoppini G, Bonora E et al (2017) Prognostic impact of diabetes on long-term survival outcomes in patients with heart failure: a meta-analysis. Diabetes Care 40(11):1597–1605

    Article  Google Scholar 

  74. Florea VG, Cohn JN (2014) The autonomic nervous system and heart failure. Circ Res 114(11):1815–1826

    Article  CAS  Google Scholar 

  75. Vinik AI, Ziegler D (2007) Diabetic cardiovascular autonomic neuropathy. Circulation 115(3):387–397

    Article  Google Scholar 

  76. Mancia G, Grassi G (2014) The autonomic nervous system and hypertension. Circ Res 114(11):1804–1814

    Article  CAS  Google Scholar 

  77. Piccirillo G, Germanò G, Vitarelli A, Ragazzo M, di Carlo S, De Laurentis T et al (2006) Autonomic cardiovascular control and diastolic dysfunction in hypertensive subjects. Int J Cardiol 110(2):160–166

    Article  Google Scholar 

  78. Grassi G, Seravalle G, Quarti-Trevano F, Dell’Oro R, Arenare F, Spaziani D et al (2009) Sympathetic and baroreflex cardiovascular control in hypertension-related left ventricular dysfunction. Hypertension 53(2):205–209

    Article  CAS  Google Scholar 

  79. Babick A, Elimban V, Zieroth S, Dhalla NS (2013) Reversal of cardiac dysfunction and subcellular alterations by metoprolol in heart failure due to myocardial infarction. J Cell Physiol 228(10):2063–2070

    Article  CAS  Google Scholar 

  80. Colucci WS (1998) The effects of norepinephrine on myocardial biology: implications for the therapy of heart failure. Clin Cardiol 21(12 Suppl 1):I20-24

    Article  CAS  Google Scholar 

  81. Arnett DK, Blumenthal RS, Albert MA, Buroker AB, Goldberger ZD, Hahn EJ et al (2019) 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: a report of the american college of cardiology/american heart association task force on clinical practice guidelines. Circulation 140(11):e596-646

    Google Scholar 

  82. Bays HE, Taub PR, Epstein E, Michos ED, Ferraro RA, Bailey AL et al (2021) Ten things to know about ten cardiovascular disease risk factors. Am J Prev Cardiol: 100149

  83. Khan MS, Khan F, Fonarow GC, Sreenivasan J, Greene SJ, Khan SU et al (2021) Dietary interventions and nutritional supplements for heart failure: a systematic appraisal and evidence map. Eur J Heart Fail [Internet]. [cited 2021 Sep 13];n/a(n/a). Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/ejhf.2278

  84. Echouffo-Tcheugui JB, Butler J, Yancy CW, Fonarow GC (2015) Association of physical activity or fitness with incident heart failure: a systematic review and meta-analysis. Circ Heart Fail 8(5):853–861

    Article  CAS  Google Scholar 

  85. Garvey WT, Mechanick JI, Brett EM, Garber AJ, Hurley DL, Jastreboff AM et al (2016) American association of clinical endocrinologists and american college of endocrinology comprehensive clinical practice guidelines for medical care of patients with obesity. Endocr Pract 22(Suppl 3):1–203

    Article  Google Scholar 

  86. Feldman AL, Griffin SJ, Ahern AL, Long GH, Weinehall L, Fhärm E et al (2017) Impact of weight maintenance and loss on diabetes risk and burden: a population-based study in 33,184 participants. BMC Public Health 17(1):170

    Article  Google Scholar 

  87. Pandey A, Patel KV, Bahnson JL, Gaussoin SA, Martin CK, Balasubramanyam A et al (2020) Association of intensive lifestyle intervention, fitness, and body mass index with risk of heart failure in overweight or obese adults with type 2 diabetes mellitus. Circulation 141(16):1295–1306

    Article  Google Scholar 

  88. MacMahon SW, Wilcken DE, Macdonald GJ (1986) The effect of weight reduction on left ventricular mass. A randomized controlled trial in young, overweight hypertensive patients. N Engl J Med 314(6):334–339

    Article  CAS  Google Scholar 

  89. Katzmarzyk PT, Martin CK, Newton RL, Apolzan JW, Arnold CL, Davis TC et al (2020) Weight loss in underserved patients - a cluster-randomized trial. N Engl J Med 383(10):909–918

    Article  Google Scholar 

  90. Kane JA, Mehmood T, Munir I, Kamran H, Kariyanna PT, Zhyvotovska A et al (2019) Cardiovascular risk reduction associated with pharmacological weight loss: a meta-analysis. Int J Clin Res Trials 4(1):131

    Article  Google Scholar 

  91. Wilding JPH, Batterham RL, Calanna S, Davies M, Van Gaal LF, Lingvay I et al (2021) Once-weekly semaglutide in adults with overweight or obesity. N Engl J Med 384(11):989

    Article  CAS  Google Scholar 

  92. Mechanick JI, Apovian C, Brethauer S, Garvey WT, Joffe AM, Kim J et al (2019) Clinical practice guidelines for the perioperative nutrition, metabolic, and nonsurgical support of patients undergoing bariatric procedures - 2019 update: cosponsored by american association of clinical endocrinologists/american college of endocrinology, the obesity society, american society for metabolic & bariatric surgery, obesity medicine association, and american society of anesthesiologists - executive summary. Endocr Pract 25(12):1346–1359

    Google Scholar 

  93. Moussa O, Ardissino M, Heaton T, Tang A, Khan O, Ziprin P et al (2020) Effect of bariatric surgery on long-term cardiovascular outcomes: a nationwide nested cohort study. Eur Heart J 41(28):2660–2667

    Article  Google Scholar 

  94. Garber AJ, Handelsman Y, Grunberger G, Einhorn D, Abrahamson MJ, Barzilay JI et al (2020) Consensus statement by the american association of clinical endocrinologists and american college of endocrinology on the comprehensive type 2 diabetes management algorithm – 2020 executive summary. Endocr Pract 26(1):107–139

    Article  Google Scholar 

  95. Castagno D, Baird-Gunning J, Jhund PS, Biondi-Zoccai G, MacDonald MR, Petrie MC et al (2011) Intensive glycemic control has no impact on the risk of heart failure in type 2 diabetic patients: evidence from a 37,229 patient meta-analysis. Am Heart J 162(5):938-948.e2

    Article  CAS  Google Scholar 

  96. Cosentino F, Grant PJ, Aboyans V, Bailey CJ, Ceriello A, Delgado V et al (2020) 2019 ESC guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J 41(2):255–323

    Article  Google Scholar 

  97. McGuire DK, Shih WJ, Cosentino F, Charbonnel B, Cherney DZI, Dagogo-Jack S et al (2021) Association of SGLT2 inhibitors with cardiovascular and kidney outcomes in patients with type 2 diabetes: a meta-analysis. JAMA Cardiol 6(2):148–158

    Article  Google Scholar 

  98. Kristensen SL, Rørth R, Jhund PS, Docherty KF, Sattar N, Preiss D et al (2019) Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet Diabetes Endocrinol 7(10):776–785

    Article  CAS  Google Scholar 

  99. Zhang D-P, Xu L, Wang L-F, Wang H-J, Jiang F (2020) Effects of antidiabetic drugs on left ventricular function/dysfunction: a systematic review and network meta-analysis. Cardiovasc Diabetol 19(1):10

    Article  Google Scholar 

  100. Haykowsky MJ, Liang Y, Pechter D, Jones LW, McAlister FA, Clark AM (2007) A meta-analysis of the effect of exercise training on left ventricular remodeling in heart failure patients: the benefit depends on the type of training performed. J Am Coll Cardiol 49(24):2329–2336

    Article  Google Scholar 

  101. Kitzman DW, Brubaker P, Morgan T, Haykowsky M, Hundley G, Kraus WE et al (2016) Effect of caloric restriction or aerobic exercise training on peak oxygen consumption and quality of life in obese older patients with heart failure with preserved ejection fraction: a randomized clinical trial. JAMA 315(1):36–46

    Article  CAS  Google Scholar 

  102. Taylor RS, Long L, Mordi IR, Madsen MT, Davies EJ, Dalal H et al (2019) Exercise-based rehabilitation for heart failure: cochrane systematic review, meta-analysis, and trial sequential analysis. JACC Heart Fail 7(8):691–705

    Article  Google Scholar 

  103. Mahajan R, Stokes M, Elliott A, Munawar DA, Khokhar KB, Thiyagarajah A et al (2020) Complex interaction of obesity, intentional weight loss and heart failure: a systematic review and meta-analysis. Heart 106(1):58–68

    Article  Google Scholar 

  104. Doumouras AG, Wong JA, Paterson JM, Lee Y, Sivapathasundaram B, Tarride J-E et al (2021) Bariatric surgery and cardiovascular outcomes in patients with obesity and cardiovascular disease: a population-based retrospective cohort study. Circulation 143(15):1468–1480

    Article  CAS  Google Scholar 

  105. daSilva-deAbreu A, Alhafez BA, Curbelo-Pena Y, Lavie CJ, Ventura HO, Loro-Ferrer JF et al (2021) Bariatric surgery in patients with obesity and ventricular assist devices considered for heart transplantation: systematic review and individual participant data meta-analysis. J Card Fail 27(3):338–348

    Article  Google Scholar 

  106. Zannad F, Ferreira JP, Pocock SJ, Anker SD, Butler J, Filippatos G et al (2020) SGLT2 inhibitors in patients with heart failure with reduced ejection fraction: a meta-analysis of the EMPEROR-reduced and DAPA-HF trials. Lancet 396(10254):819–829

    Article  Google Scholar 

  107. Anker SD, Butler J, Filippatos G, Ferreira JP, Bocchi E, Böhm M et al (2021) Empagliflozin in heart failure with a preserved ejection fraction. N Engl J Med 385(16):1451–1461

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Thadeu de Oliveira Correia.

Ethics declarations

Conflict of interest

Dr. Mechanick has received honoraria for lectures and program development from Abbott Nutrition. Drs. Eduardo Correia, Letícia Barbetta, Antonio Jorge, and Evandro Mesquita have no relationships relevant to the contents of this paper to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira Correia, E.T., Mechanick, J.I., dos Santos Barbetta, L.M. et al. Cardiometabolic-based chronic disease: adiposity and dysglycemia drivers of heart failure. Heart Fail Rev 28, 47–61 (2023). https://doi.org/10.1007/s10741-022-10233-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-022-10233-x

Keywords

Navigation