Skip to main content
Log in

Pathophysiological mechanism and therapeutic role of S100 proteins in cardiac failure: a systematic review

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

S100 proteins are a family of highly acidic calcium-binding proteins involved in calcium handling in many tissues and organs. Some of these proteins are highly expressed in cardiac tissue, and an impairment of some specific S100 proteins has been related to heart failure. To check this hypothesis, we decided to review the literature since 2008 until May 2015. According to the studies collected, recovering S100A1 levels may enhance contractile/relaxing performance in heart failure, reverse negative force–frequency relationship, improve contractile reserve, reverse diastolic dysfunction and protect against pro-arrhythmic reductions of sarcoplasmic reticulum calcium. The safety profile of gene therapy was also confirmed. Increased S100B protein levels were related to a worse outcome in chronic heart failure. S100A8/A9 complex plasma levels, as well as other inflammatory biomarkers, were significantly higher in chronic heart failure patients. S100A2 seems to increase both contractile and relaxation performance in animal cardiomyocytes. Otherwise, S100A6 cardiac expression seems to have no effects on contractility. S100A4 KO mice showed reduced cardiac interstitial fibrosis. Data collected encourage a potential prospective application in human. These proteins could be exploited as biomarkers in stadiation and prognosis of chronic heart failure, as well as therapeutic target to rescue failing heart.

Registration details The study protocol has been registered in PROSPERO (http://www.crd.york.ac.uk/PROSPERO/) under registration number CRD42015027932.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr, Drazner MH, Fonarow GC, Geraci SA, Horwich T, Januzzi JL, Johnson MR, Kasper EK, Levy WC, Masoudi FA, McBride PE, McMurray JJ, Mitchell JE, Peterson PN, Riegel B, Sam F, Stevenson LW, Tang WH, Tsai EJ, Wilkoff BL (2013) 2013 accf/aha guideline for the management of heart failure: a report of the american college of cardiology foundation/american heart association task force on practice guidelines. J Am Coll Cardiol 62:e147–e239

    Article  PubMed  Google Scholar 

  2. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Borden WB, Bravata DM, Dai S, Ford ES, Fox CS, Franco S, Fullerton HJ, Gillespie C, Hailpern SM, Heit JA, Howard VJ, Huffman MD, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Magid D, Marcus GM, Marelli A, Matchar DB, McGuire DK, Mohler ER, Moy CS, Mussolino ME, Nichol G, Paynter NP, Schreiner PJ, Sorlie PD, Stein J, Turan TN, Virani SS, Wong ND, Woo D, Turner MB (2013) Heart disease and stroke statistics—2013 update: a report from the american heart association. Circulation 127:e6–e245

    Article  PubMed  Google Scholar 

  3. Heidenreich PA, Albert NM, Allen LA, Bluemke DA, Butler J, Fonarow GC, Ikonomidis JS, Khavjou O, Konstam MA, Maddox TM, Nichol G, Pham M, Pina IL, Trogdon JG (2013) Forecasting the impact of heart failure in the united states: a policy statement from the american heart association. Circ Heart Fail 6:606–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Djousse L, Driver JA, Gaziano JM (2009) Relation between modifiable lifestyle factors and lifetime risk of heart failure. JAMA 302:394–400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Khatibzadeh S, Farzadfar F, Oliver J, Ezzati M, Moran A (2013) Worldwide risk factors for heart failure: a systematic review and pooled analysis. Int J Cardiol 168:1186–1194

    Article  PubMed  Google Scholar 

  6. Mehra MR, Uber PA, Francis GS (2003) Heart failure therapy at a crossroad: are there limits to the neurohormonal model? J Am Coll Cardiol 41:1606–1610

    Article  PubMed  Google Scholar 

  7. Nieminen MS, Dickstein K, Fonseca C, Serrano JM, Parissis J, Fedele F, Wikstrom G, Agostoni P, Atar S, Baholli L, Brito D, Colet JC, Edes I, Gomez Mesa JE, Gorjup V, Garza EH, Gonzalez Juanatey JR, Karanovic N, Karavidas A, Katsytadze I, Kivikko M, Matskeplishvili S, Merkely B, Morandi F, Novoa A, Oliva F, Ostadal P, Pereira-Barretto A, Pollesello P, Rudiger A, Schwinger RH, Wieser M, Yavelov I, Zymlinski R (2015) The patient perspective: quality of life in advanced heart failure with frequent hospitalisations. Int J Cardiol 191:256–264

  8. Schafer BW, Heizmann CW (1996) The s100 family of ef-hand calcium-binding proteins: functions and pathology. Trends Biochem Sci 21:134–140

    Article  CAS  PubMed  Google Scholar 

  9. Heizmann CW (2002) The multifunctional s100 protein family. Methods Mol Biol 172:69–80

    CAS  PubMed  Google Scholar 

  10. Heizmann CW, Fritz G, Schafer BW (2002) S100 proteins: structure, functions and pathology. Front Biosci 7:d1356–d1368

    CAS  PubMed  Google Scholar 

  11. Velagaleti RS, Gona P, Larson MG, Wang TJ, Levy D, Benjamin EJ, Selhub J, Jacques PF, Meigs JB, Tofler GH, Vasan RS (2010) Multimarker approach for the prediction of heart failure incidence in the community. Circulation 122:1700–1706

    Article  PubMed  PubMed Central  Google Scholar 

  12. Dhingra R, Vasan RS (2012) Diabetes and the risk of heart failure. Heart Fail Clin 8:125–133

    Article  PubMed  Google Scholar 

  13. Wang TJ, Wollert KC, Larson MG, Coglianese E, McCabe EL, Cheng S, Ho JE, Fradley MG, Ghorbani A, Xanthakis V, Kempf T, Benjamin EJ, Levy D, Vasan RS, Januzzi JL (2012) Prognostic utility of novel biomarkers of cardiovascular stress: the Framingham heart study. Circulation 126:1596–1604

    Article  CAS  PubMed  Google Scholar 

  14. Frankel DS, Vasan RS, D’Agostino RB Sr, Benjamin EJ, Levy D, Wang TJ, Meigs JB (2009) Resistin, adiponectin, and risk of heart failure the framingham offspring study. J Am Coll Cardiol 53:754–762

    Article  CAS  PubMed  Google Scholar 

  15. Kalogeropoulos A, Georgiopoulou V, Psaty BM, Rodondi N, Smith AL, Harrison DG, Liu Y, Hoffmann U, Bauer DC, Newman AB, Kritchevsky SB, Harris TB, Butler J (2010) Inflammatory markers and incident heart failure risk in older adults: the health abc (health, aging, and body composition) study. J Am Coll Cardiol 55:2129–2137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gopal DM, Kalogeropoulos AP, Georgiopoulou VV, Smith AL, Bauer DC, Newman AB, Kim L, Bibbins-Domingo K, Tindle H, Harris TB, Tang WW, Kritchevsky SB, Butler J (2012) Cigarette smoking exposure and heart failure risk in older adults: the health, aging, and body composition study. Am Heart J 164:236–242

    Article  PubMed  PubMed Central  Google Scholar 

  17. Gopal DM, Kalogeropoulos AP, Georgiopoulou VV, Tang WW, Methvin A, Smith AL, Bauer DC, Newman AB, Kim L, Harris TB, Kritchevsky SB, Butler J (2010) Serum albumin concentration and heart failure risk the health, aging, and body composition study. Am Heart J 160:279–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jessup M, Greenberg B, Mancini D, Cappola T, Pauly DF, Jaski B, Yaroshinsky A, Zsebo KM, Dittrich H, Hajjar RJ (2011) Calcium upregulation by percutaneous administration of gene therapy in cardiac disease (cupid): a phase 2 trial of intracoronary gene therapy of sarcoplasmic reticulum Ca2+-atpase in patients with advanced heart failure. Circulation 124:304–313

    Article  CAS  PubMed  Google Scholar 

  19. Kraus C, Rohde D, Weidenhammer C, Qiu G, Pleger ST, Voelkers M, Boerries M, Remppis A, Katus HA, Most P (2009) S100a1 in cardiovascular health and disease: closing the gap between basic science and clinical therapy. J Mol Cell Cardiol 47:445–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Boerries M, Most P, Gledhill JR, Walker JE, Katus HA, Koch WJ, Aebi U, Schoenenberger CA (2007) Ca2+-dependent interaction of s100a1 with f1-atpase leads to an increased atp content in cardiomyocytes. Mol Cell Biol 27:4365–4373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gusev K, Ackermann GE, Heizmann CW, Niggli E (2009) Ca2+ signaling in mouse cardiomyocytes with ablated s100a1 protein. Gen Physiol Biophys 28:371–383

    Article  CAS  PubMed  Google Scholar 

  22. Most P, Bernotat J, Ehlermann P, Pleger ST, Reppel M, Borries M, Niroomand F, Pieske B, Janssen PM, Eschenhagen T, Karczewski P, Smith GL, Koch WJ, Katus HA, Remppis A (2001) S100a1: a regulator of myocardial contractility. Proc Natl Acad Sci USA 98:13889–13894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Most P, Remppis A, Pleger ST, Loffler E, Ehlermann P, Bernotat J, Kleuss C, Heierhorst J, Ruiz P, Witt H, Karczewski P, Mao L, Rockman HA, Duncan SJ, Katus HA, Koch WJ (2003) Transgenic overexpression of the Ca2+-binding protein s100a1 in the heart leads to increased in vivo myocardial contractile performance. J Biol Chem 278:33809–33817

    Article  CAS  PubMed  Google Scholar 

  24. Most P, Seifert H, Gao E, Funakoshi H, Volkers M, Heierhorst J, Remppis A, Pleger ST, DeGeorge BR Jr, Eckhart AD, Feldman AM, Koch WJ (2006) Cardiac s100a1 protein levels determine contractile performance and propensity toward heart failure after myocardial infarction. Circulation 114:1258–1268

    Article  CAS  PubMed  Google Scholar 

  25. Tsoporis JN, Marks A, Zimmer DB, McMahon C, Parker TG (2003) The myocardial protein s100a1 plays a role in the maintenance of normal gene expression in the adult heart. Mol Cell Biochem 242:27–33

    Article  CAS  PubMed  Google Scholar 

  26. Volkers M, Loughrey CM, Macquaide N, Remppis A, DeGeorge BR Jr, Wegner FV, Friedrich O, Fink RH, Koch WJ, Smith GL, Most P (2007) S100a1 decreases calcium spark frequency and alters their spatial characteristics in permeabilized adult ventricular cardiomyocytes. Cell Calcium 41:135–143

    Article  PubMed  Google Scholar 

  27. Volkers M, Rohde D, Goodman C, Most P (2010) S100a1: a regulator of striated muscle sarcoplasmic reticulum Ca2+ handling, sarcomeric, and mitochondrial function. J Biomed Biotechnol 2010:178614

    Article  PubMed  PubMed Central  Google Scholar 

  28. Remppis A, Greten T, Schafer BW, Hunziker P, Erne P, Katus HA, Heizmann CW (1996) Altered expression of the Ca(2+)-binding protein s100a1 in human cardiomyopathy. Biochim Biophys Acta 1313:253–257

    Article  PubMed  Google Scholar 

  29. Brinks H, Rohde D, Voelkers M, Qiu G, Pleger ST, Herzog N, Rabinowitz J, Ruhparwar A, Silvestry S, Lerchenmuller C, Mather PJ, Eckhart AD, Katus HA, Carrel T, Koch WJ, Most P (2011) S100a1 genetically targeted therapy reverses dysfunction of human failing cardiomyocytes. J Am Coll Cardiol 58:966–973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Davis J, Westfall MV, Townsend D, Blankinship M, Herron TJ, Guerrero-Serna G, Wang W, Devaney E, Metzger JM (2008) Designing heart performance by gene transfer. Physiol Rev 88:1567–1651

    Article  CAS  PubMed  Google Scholar 

  31. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JP, Clarke M, Devereaux PJ, Kleijnen J, Moher D (2009) The prisma statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ 339:b2700

    Article  PubMed  PubMed Central  Google Scholar 

  32. Gupta RC, Mishra S, Rastogi S, Wang M, Rousso B, Mika Y, Remppis A, Sabbah HN (2009) Ca(2+)-binding proteins in dogs with heart failure: effects of cardiac contractility modulation electrical signals. Clin Transl Sci. 2:211–215

    Article  CAS  PubMed  Google Scholar 

  33. Pleger ST, Harris DM, Shan C, Vinge LE, Chuprun JK, Berzins B, Pleger W, Druckman C, Volkers M, Heierhorst J, Oie E, Remppis A, Katus HA, Scalia R, Eckhart AD, Koch WJ, Most P (2008) Endothelial s100a1 modulates vascular function via nitric oxide. Circ Res 102:786–794

    Article  CAS  PubMed  Google Scholar 

  34. Pleger ST, Shan C, Ksienzyk J, Bekeredjian R, Boekstegers P, Hinkel R, Schinkel S, Leuchs B, Ludwig J, Qiu G, Weber C, Raake P, Koch WJ, Katus HA, Muller OJ, Most P (2011) Cardiac aav9-s100a1 gene therapy rescues post-ischemic heart failure in a preclinical large animal model. Sci Transl Med 3:92ra64

  35. Pleger ST, Most P, Boucher M, Soltys S, Chuprun JK, Pleger W, Gao E, Dasgupta A, Rengo G, Remppis A, Katus HA, Eckhart AD, Rabinowitz JE, Koch WJ (2007) Stable myocardial-specific aav6-s100a1 gene therapy results in chronic functional heart failure rescue. Circulation 115:2506–2515

    Article  CAS  PubMed  Google Scholar 

  36. Yamaguchi N, Chakraborty A, Huang TQ, Xu L, Gomez AC, Pasek DA, Meissner G (2013) Cardiac hypertrophy associated with impaired regulation of cardiac ryanodine receptor by calmodulin and s100a1. Am J Physiol Heart Circ Physiol 305:H86–H94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Weber C, Neacsu I, Krautz B, Schlegel P, Sauer S, Raake P, Ritterhoff J, Jungmann A, Remppis AB, Stangassinger M, Koch WJ, Katus HA, Muller OJ, Most P, Pleger ST (2014) Therapeutic safety of high myocardial expression levels of the molecular inotrope s100a1 in a preclinical heart failure model. Gene Ther 21:131–138

    Article  CAS  PubMed  Google Scholar 

  38. Ritterhoff J, Volkers M, Seitz A, Spaich K, Gao E, Peppel K, Pleger ST, Zimmermann WH, Friedrich O, Fink RH, Koch WJ, Katus HA, Most P (2015) S100a1 DNA-based inotropic therapy protects against proarrhythmogenic ryanodine receptor 2 dysfunction. Mol Ther 23:1320–1330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hofmann MA, Drury S, Fu C, Qu W, Taguchi A, Lu Y, Avila C, Kambham N, Bierhaus A, Nawroth P, Neurath MF, Slattery T, Beach D, McClary J, Nagashima M, Morser J, Stern D, Schmidt AM (1999) Rage mediates a novel proinflammatory axis: a central cell surface receptor for s100/calgranulin polypeptides. Cell 97:889–901

    Article  CAS  PubMed  Google Scholar 

  40. Vogl T, Gharibyan AL, Morozova-Roche LA (2012) Pro-inflammatory s100a8 and s100a9 proteins: self-assembly into multifunctional native and amyloid complexes. Int J Mol Sci 13:2893–2917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Volz HC, Laohachewin D, Seidel C, Lasitschka F, Keilbach K, Wienbrandt AR, Andrassy J, Bierhaus A, Kaya Z, Katus HA, Andrassy M (2012) S100a8/a9 aggravates post-ischemic heart failure through activation of rage-dependent nf-kappab signaling. Basic Res Cardiol 107:250

    Article  PubMed  Google Scholar 

  42. Tamaki Y, Iwanaga Y, Niizuma S, Kawashima T, Kato T, Inuzuka Y, Horie T, Morooka H, Takase T, Akahashi Y, Kobuke K, Ono K, Shioi T, Sheikh SP, Ambartsumian N, Lukanidin E, Koshimizu TA, Miyazaki S, Kimura T (2013) Metastasis-associated protein, s100a4 mediates cardiac fibrosis potentially through the modulation of p53 in cardiac fibroblasts. J Mol Cell Cardiol 57:72–81

    Article  CAS  PubMed  Google Scholar 

  43. Wang W, Asp ML, Guerrero-Serna G, Metzger JM (2014) Differential effects of s100 proteins a2 and a6 on cardiac Ca(2+) cycling and contractile performance. J Mol Cell Cardiol 72:117–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ma LP, Haugen E, Ikemoto M, Fujita M, Terasaki F, Fu M (2012) S100a8/a9 complex as a new biomarker in prediction of mortality in elderly patients with severe heart failure. Int J Cardiol 155:26–32

    Article  PubMed  Google Scholar 

  45. Li JP, Lu L, Wang LJ, Zhang FR, Shen WF (2011) Increased serum levels of s100b are related to the severity of cardiac dysfunction, renal insufficiency and major cardiac events in patients with chronic heart failure. Clin Biochem 44:984–988

    Article  CAS  PubMed  Google Scholar 

  46. Bennett MK, Sweet WE, Baicker-McKee S, Looney E, Karohl K, Mountis M, Tang WH, Starling RC, Moravec CS (2014) S100a1 in human heart failure: lack of recovery following left ventricular assist device support. Circ Heart Fail 7:612–618

    Article  PubMed  PubMed Central  Google Scholar 

  47. Most P, Raake P, Weber C, Katus HA, Pleger ST (2013) S100a1 gene therapy in small and large animals. Methods Mol Biol 963:407–420

    Article  CAS  PubMed  Google Scholar 

  48. Ehlermann P, Remppis A, Guddat O, Weimann J, Schnabel PA, Motsch J, Heizmann CW, Katus HA (2000) Right ventricular upregulation of the Ca(2+) binding protein s100a1 in chronic pulmonary hypertension. Biochim Biophys Acta 1500:249–255

    Article  CAS  PubMed  Google Scholar 

  49. Salama I, Malone PS, Mihaimeed F, Jones JL (2008) A review of the s100 proteins in cancer. Eur J Surg Oncol 34:357–364

    Article  CAS  PubMed  Google Scholar 

  50. Chan WY, Xia CL, Dong DC, Heizmann CW, Yew DT (2003) Differential expression of s100 proteins in the developing human hippocampus and temporal cortex. Microsc Res Tech 60:600–613

    Article  CAS  PubMed  Google Scholar 

  51. Buckiova D, Syka J (2009) Calbindin and s100 protein expression in the developing inner ear in mice. J Comp Neurol 513:469–482

    Article  PubMed  Google Scholar 

  52. Most P, Pleger ST, Volkers M, Heidt B, Boerries M, Weichenhan D, Loffler E, Janssen PM, Eckhart AD, Martini J, Williams ML, Katus HA, Remppis A, Koch WJ (2004) Cardiac adenoviral s100a1 gene delivery rescues failing myocardium. J Clin Invest 114:1550–1563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pleger ST, Most P, Heidt B, Voelkers M, Hata JA, Katus HA, Remppis A, Koch WJ (2006) S100a1 gene transfer in myocardium. Eur J Med Res 11:418–422

    CAS  PubMed  Google Scholar 

  54. Pleger ST, Remppis A, Heidt B, Volkers M, Chuprun JK, Kuhn M, Zhou RH, Gao E, Szabo G, Weichenhan D, Muller OJ, Eckhart AD, Katus HA, Koch WJ, Most P (2005) S100a1 gene therapy preserves in vivo cardiac function after myocardial infarction. Mol Ther 12:1120–1129

    Article  CAS  PubMed  Google Scholar 

  55. Desjardins JF, Pourdjabbar A, Quan A, Leong-Poi H, Teichert-Kuliszewska K, Verma S, Parker TG (2009) Lack of s100a1 in mice confers a gender-dependent hypertensive phenotype and increased mortality after myocardial infarction. Am J Physiol Heart Circ Physiol 296:H1457–H1465

    Article  CAS  PubMed  Google Scholar 

  56. Ogletree ML, Sweet WE, Talerico C, Klecka ME, Young JB, Smedira NG, Starling RC, Moravec CS (2010) Duration of left ventricular assist device support: effects on abnormal calcium cycling and functional recovery in the failing human heart. J Heart Lung Transpl 29:554–561

    Article  Google Scholar 

  57. Altwegg LA, Neidhart M, Hersberger M, Muller S, Eberli FR, Corti R, Roffi M, Sutsch G, Gay S, von Eckardstein A, Wischnewsky MB, Luscher TF, Maier W (2007) Myeloid-related protein 8/14 complex is released by monocytes and granulocytes at the site of coronary occlusion: a novel, early, and sensitive marker of acute coronary syndromes. Eur Heart J 28:941–948

    Article  CAS  PubMed  Google Scholar 

  58. Frosch M, Vogl T, Seeliger S, Wulffraat N, Kuis W, Viemann D, Foell D, Sorg C, Sunderkotter C, Roth J (2003) Expression of myeloid-related proteins 8 and 14 in systemic-onset juvenile rheumatoid arthritis. Arthritis Rheum 48:2622–2626

    Article  CAS  PubMed  Google Scholar 

  59. Hermani A, Hess J, De Servi B, Medunjanin S, Grobholz R, Trojan L, Angel P, Mayer D (2005) Calcium-binding proteins s100a8 and s100a9 as novel diagnostic markers in human prostate cancer. Clin Cancer Res 11:5146–5152

    Article  CAS  PubMed  Google Scholar 

  60. Ikemoto M, Tanaka T, Takai Y, Murayama H, Tanaka K, Fujita M (2003) New elisa system for myeloid-related protein complex (mrp8/14) and its clinical significance as a sensitive marker for inflammatory responses associated with transplant rejection. Clin Chem 49:594–600

    Article  CAS  PubMed  Google Scholar 

  61. Healy AM, Pickard MD, Pradhan AD, Wang Y, Chen Z, Croce K, Sakuma M, Shi C, Zago AC, Garasic J, Damokosh AI, Dowie TL, Poisson L, Lillie J, Libby P, Ridker PM, Simon DI (2006) Platelet expression profiling and clinical validation of myeloid-related protein-14 as a novel determinant of cardiovascular events. Circulation 113:2278–2284

    Article  CAS  PubMed  Google Scholar 

  62. Hasenfuss G, Pieske B (2002) Calcium cycling in congestive heart failure. J Mol Cell Cardiol 34:951–969

    Article  CAS  PubMed  Google Scholar 

  63. Lompre AM, Hajjar RJ, Harding SE, Kranias EG, Lohse MJ, Marks AR (2010) Ca2+ cycling and new therapeutic approaches for heart failure. Circulation 121:822–830

    Article  PubMed  PubMed Central  Google Scholar 

  64. Piacentino V 3rd, Weber CR, Chen X, Weisser-Thomas J, Margulies KB, Bers DM, Houser SR (2003) Cellular basis of abnormal calcium transients of failing human ventricular myocytes. Circ Res 92:651–658

    Article  CAS  PubMed  Google Scholar 

  65. Tomaselli GF, Marban E (1999) Electrophysiological remodeling in hypertrophy and heart failure. Cardiovasc Res 42:270–283

    Article  CAS  PubMed  Google Scholar 

  66. Yano M, Yamamoto T, Kobayashi S, Ikeda Y, Matsuzaki M (2008) Defective Ca2+ cycling as a key pathogenic mechanism of heart failure. Circ J 72(Suppl A):A22–A30

    Article  PubMed  Google Scholar 

  67. Rohde D, Brinks H, Ritterhoff J, Qui G, Ren S, Most P (2011) S100a1 gene therapy for heart failure: a novel strategy on the verge of clinical trials. J Mol Cell Cardiol 50:777–784

    Article  CAS  PubMed  Google Scholar 

  68. Cesari M, Penninx BW, Newman AB, Kritchevsky SB, Nicklas BJ, Sutton-Tyrrell K, Rubin SM, Ding J, Simonsick EM, Harris TB, Pahor M (2003) Inflammatory markers and onset of cardiovascular events: results from the health abc study. Circulation 108:2317–2322

    Article  CAS  PubMed  Google Scholar 

  69. Kardys I, Knetsch AM, Bleumink GS, Deckers JW, Hofman A, Stricker BH, Witteman JC (2006) C-reactive protein and risk of heart failure. The Rotterdam study. Am Heart J 152:514–520

    Article  CAS  PubMed  Google Scholar 

  70. Williams ES, Shah SJ, Ali S, Na BY, Schiller NB, Whooley MA (2008) C-reactive protein, diastolic dysfunction, and risk of heart failure in patients with coronary disease: heart and soul study. Eur J Heart Fail 10:63–69

    Article  CAS  PubMed  Google Scholar 

  71. Araujo JP, Lourenco P, Azevedo A, Frioes F, Rocha-Goncalves F, Ferreira A, Bettencourt P (2009) Prognostic value of high-sensitivity c-reactive protein in heart failure: a systematic review. J Card Fail 15:256–266

    Article  CAS  PubMed  Google Scholar 

  72. Tsoporis JN, Marks A, Kahn HJ, Butany JW, Liu PP, O’Hanlon D, Parker TG (1997) S100beta inhibits alpha1-adrenergic induction of the hypertrophic phenotype in cardiac myocytes. J Biol Chem 272:31915–31921

    Article  CAS  PubMed  Google Scholar 

  73. Donato R, Sorci G, Riuzzi F, Arcuri C, Bianchi R, Brozzi F, Tubaro C, Giambanco I (2009) S100b’s double life: intracellular regulator and extracellular signal. Biochim Biophys Acta 1793:1008–1022

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Egidio Imbalzano.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imbalzano, E., Mandraffino, G., Casciaro, M. et al. Pathophysiological mechanism and therapeutic role of S100 proteins in cardiac failure: a systematic review. Heart Fail Rev 21, 463–473 (2016). https://doi.org/10.1007/s10741-016-9529-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-016-9529-8

Keywords

Navigation