Skip to main content
Log in

Clinical relevance of biomarkers in heart failure and cardiorenal syndrome: the role of natriuretic peptides and troponin

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

In recent years, numerous biomarkers have been studied in heart failure to improve diagnostic accuracy and identify patients at higher risk. The overall outcome remains fairish despite improvements in therapy, with mean survival after first hospitalization, around 5 years. We therefore need surrogate end points to better understand the pathogenetic mechanisms of the disease, including interplays with other organs. The kidney plays an important role in the initiation and progression of HF, and around one-third of patients with HF show some degree of renal dysfunction. In addition, treatment for HF often worsens renal function, consequently to hemodynamic and clinical improvement do not correspond an effective improvement in HF prognosis. Association between HF and renal impairment (RI) is now classified as cardiorenal syndrome (CRS) pointing out the bidirectional nature of this vicious circle leading to a mutual and progressive damage of both organs. The clinicians can rely on circulating biomarkers that give insights into the underlying pathogenetic mechanisms and help in risk stratification. Recently, a multimarker strategy including biomarker tool to traditional risk scores has been purposed and applied: Although each biomarker provided incremental outcome benefit, the combination of multiple biomarkers should offer the greatest improvement in risk prediction. Natriuretic peptides (NP) and cardiac troponins (TN) are the two biomarkers most studied in this setting, probably because of their organ-specific nature. However, both NP and TN cutoffs in presence of renal dysfunction need to be revised and discussed in relation to age, gender and stage of RI. In this context, the biomarkers are a unique opportunity to elucidate pathophysiological mechanisms, tailor clinical management to the single patient and improve outcomes. Specific studies about the exact role of biomarkers as in HF as in CRS should be planned and considered for future trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gheorghiade M, Pang PS (2009) Acute heart failure syndromes. J Am Coll Cardiol 53:557–573

    PubMed  Google Scholar 

  2. Jessup M, Abraham WT, Casey DE, Feldman AM, Francis GS, Ganiats TG, Konstam MA, Mancini DM, Rahko PS, Silver MA, Stevenson LW, Yancy CW (2009) 2009 Focused update: ACCF/AHA guidelines for the diagnosis and management of heart failure in adults: a report of the American college of cardiology foundation/America heart association task force on practice guidelines: developed in collaboration with the international society of heart and lung transplantation. Circulation 119:1977–2016

    PubMed  Google Scholar 

  3. Floras JS (2009) Sympathetic nervous system activation in human heart failure clinical implications of an updated model. J Am Coll Cardiol 54:375–385

    CAS  PubMed  Google Scholar 

  4. Gheorghiade M, De Luca L, Bonow RO (2005) Neurohormonal inhibition in heart failure: insights from recent clinical trials. Am J Cardiol 96:3L–9L

    CAS  PubMed  Google Scholar 

  5. Heywood JT, Fonarow GC (2007) High prevalence of renal dysfunction and its impact on outcome in 118,465 patients hospitalized with acute decompensated heart failure: a report from the ADHERE Database. J Card Fail 13:422–430

    PubMed  Google Scholar 

  6. Smith GL, Lichtman JH, Bracken MB, Shlipak MG, Phillips CO, DiCapua P, Krumholz HM (2006) Renal impairment and outcomes in heart failure systematic review and meta-analysis. J Am Coll Cardiol 47:1987–1996

    PubMed  Google Scholar 

  7. Ronco C, McCullough P, Anker SD et al (2010) Cardio-renal syndromes: report from the consensus conference of the acute dialysis quality initiative. Eur Heart J 31:703–711

    PubMed  Google Scholar 

  8. Maisel A, Katz N, Hillege HL, Shaw A, Zanco P, Bellomo R et al (2011) Biomarkers in Kidney and heart diseases. Nephrol Dyal Transpl 26:62–74

    Google Scholar 

  9. Braunwald E (2008) Biomarkers in heart failure. N Engl J Med 358:2148–2159

    CAS  PubMed  Google Scholar 

  10. Cheung BMY, Kumana CR (1998) Natriuretic peptides-relevance in cardiac disease. JAMA 280:1983

    CAS  PubMed  Google Scholar 

  11. Maisel AS, Choudhary R (2012) Biomarkers in acute heart failure-state of the art. Nat Rev Cardiol 9:478–490

    CAS  PubMed  Google Scholar 

  12. Silver MA, Maisel A, Yancy CW, McCullough PA, Burnett JC Jr, Francis GS et al (2004) BNP Consensus Panel 2004: a clinical approach for the diagnostic, prognostic, screening, treatment monitoring, and therapeutic roles of natriuretic peptides in cardiovascular diseases. Congest Heart Fail 10(5 Suppl 3):1–30

    CAS  Google Scholar 

  13. McMurray JJ, Adamopoulos S, Anker SD, Auricchio A, Böhm M et al (2012) ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: the task force for the diagnosis and treatment of acute and chronic heart failure 2012 of the European society of cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur Heart J 33:1787–1847

    PubMed  Google Scholar 

  14. Maisel AS, Krishnaswamy P, Nowak RM, McCord J, Hollander JE, Duc P et al (2002) Breathing Not Properly multinational study investigators. Rapid measurement of B-type natriuretic peptide in the emergency diagnosis of heart failure. N Engl J Med 347:161–167

    CAS  PubMed  Google Scholar 

  15. Lainchbury JG, Campbell E, Frampton CM, Yandle TG, Nicholls MG, Richards AM (2003) Brain natriuretic peptide and N-terminal brain natriuretic peptide in the diagnosis of heart failure in patients with acute shortness of breath. J Am Coll Cardiol 42:728–735

    CAS  PubMed  Google Scholar 

  16. Januzzi JL Jr, Camargo CA, Anwaruddin S et al (2005) The N-terminal Pro-BNP investigation of dyspnea in the emergency department (PRIDE) study. Am J Cardiol 95:948–954

    CAS  PubMed  Google Scholar 

  17. Daniels LB, Maisel AS (2007) Natriuretic peptides. J Am Coll Cardiol 50:2357–2368

    CAS  PubMed  Google Scholar 

  18. Palazzuoli A, Antonelli G, Quatrini I, Nuti R (2011) Natriuretic peptides in heart failure: where we are where we are going. Intern Emerg Med 6:63–68

    PubMed  Google Scholar 

  19. Maisel A, Hollander JE, Guss D et al (2004) Primary results of the rapid emergency department heart failure outpatient trial (REDHOT). A multicenter study of B-type natriuretic peptide levels, emergency department decision making, and outcomes in patients presenting with shortness of breath. J Am Coll Cardiol 44:1328–1333

    PubMed  Google Scholar 

  20. Silver MA, Maisel A, Yancy CW et al (2004) BNP Consensus Panel 2004: a clinical approach for the diagnostic, prognostic, screening, treatment monitoring, and therapeutic roles of natriuretic peptides in cardiovascular diseases. Congest Heart Fail 10(Suppl 3):1–30

    CAS  Google Scholar 

  21. Thygesen K, Mair J, Mueller C, Huber K, Weber M, Plebani M, Hasin Y, Biasucci LM (2012) Recommendations for the use of natriuretic peptides in acute cardiac care: a position statement from the study group on biomarkers in cardiology of the ESC working group on acute cardiac care. Eur Heart J 33:2001–2006

    CAS  PubMed  Google Scholar 

  22. Fonarow GC, Peacock WF, Phillips CO, Givertz MM, Lopatin M (2007) Admission B-type natriuretic peptide levels and in-hospital mortality in acute decompensated heart failure. J Am Coll Cardiol 49:1943–1950

    CAS  PubMed  Google Scholar 

  23. Fonarow GC, Peacock WF, Horwich TB et al (2008) Usefulness of B-type natriuretic peptide and cardiac troponin levels to predict in-hospital mortality from ADHERE. Am J Cardiol 101:231–237

    CAS  PubMed  Google Scholar 

  24. Pimenta J, Paulo C, Mascarenhas J, Gomes A, Azevedo A, Rocha-Gonçalves F, Bettencourt P (2010) BNP at discharge in acute heart failure patients: is it all about volemia? A study using impedance cardiography to assess fluid and hemodynamic status. Int J Cardiol 145:209–214

    PubMed  Google Scholar 

  25. Bettencourt P, Azevedo A, Pimenta J, Friões F, Ferreira S, Ferreira A (2004) N-terminal-pro-brain natriuretic peptide predicts outcome after hospital discharge in heart failure patients. Circulation 110:2168–2174

    CAS  PubMed  Google Scholar 

  26. Richards AM, Doughty R, Nicholls MG, MacMahon S, Sharpe N, Murphy J, Espiner EA, Frampton C, Yandle TG (2006) Australia–New Zealand heart failure group plasma N-terminal pro-brain natriuretic peptide and adrenomedullin: prognostic utility and prediction of benefit from carvedilol in chronic ischemic left ventricular dysfunction. J Am Coll Cardiol 37:1781–1787

    Google Scholar 

  27. Masson S, Latini R, Anand IS, Barlera S, Angelici L, Vago T, Tognoni G, Cohn JN (2008) Prognostic value of changes in N-terminal pro-brain natriuretic peptide in Val-HeFT (Valsartan Heart Failure Trial). J Am Coll Cardiol 52:997–1003

    CAS  PubMed  Google Scholar 

  28. Masson S, Latini R, Carbonieri E, Moretti L, Rossi MG, Ciricugno S (2010) The predictive value of stable precursor fragments of vasoactive peptides in patients with chronic heart failure: data from the GISSI-heart failure (GISSI-HF) trial. Eur J Heart Fail 12:338–347

    CAS  PubMed  Google Scholar 

  29. Krittayaphong R, Boonyasirinant T, Saiviroonporn P, Thanapiboonpol P, Nakyen S, Udompunturak S (2008) Correlation between NT-pro BNP levels and left ventricular wall stress, sphericity index and extent of myocardial damage: a magnetic resonance imaging study. J Card Fail 14:687–694

    CAS  PubMed  Google Scholar 

  30. Mayr A, Mair J, Schocke M, Klug G, Pedarnig K, Haubner BJ et al (2011) Predictive value of NT-pro BNP after acute myocardial infarction: relation with acute and chronic infarct size and myocardial function. Int J Cardiol 147:118–123

    PubMed  Google Scholar 

  31. Jourdain P, Jondeau G, Funck F, Gueffet P, Le Helloco A, Donal E et al (2007) Plasma brain natriuretic peptide-guided therapy to improve outcome in heart failure. J Am Coll Cardiol 49:1733–1739

    CAS  PubMed  Google Scholar 

  32. Cohen-Solal A, Logeart D, Huang B, Cai D, Nieminen MS, Mebazaa A (2009) Lowered B-type natriuretic peptide in response to levosimendan or dobutamine treatment is associated with improved survival in patients with severe acutely decompensated heart failure. J Am Coll Card 53:2343–2348

    CAS  Google Scholar 

  33. Fishbein MC, Wang T, Matijasevic M, Hong L, Apple FS (2003) Myocardial tissue troponins T and I. An immunohistochemical study in experimental models of myocardial ischemia. Cardiovasc Pathol 12:65–71

    CAS  PubMed  Google Scholar 

  34. Zhang J, Knapton A, Lipshultz SE, Weaver JL, Herman EH (2008) Isoproterenol-induced cardiotoxicity in sprague-dawley rats: correlation of reversible and irreversible myocardial injury with release of cardiac troponin T and roles of iNOS in myocardial injury. Toxicol Pathol 36:277–278

    PubMed  Google Scholar 

  35. Olivetti G, Melissari M, Capasso JM, Anversa P (1991) Cardiomyopathy of the aging human heart. Myocyte loss and reactive cellular hypertrophy. Circ Res 68:1560–1568

    CAS  PubMed  Google Scholar 

  36. Olivetti G, Giordano G, Corradi D, Melissari M, Lagrasta C, Gambert SR et al (1995) Gender differences and aging: effects on the human heart. J Am Coll Cardiol 26:1068–1079

    CAS  PubMed  Google Scholar 

  37. Agewall S, Giannitsis E, Jernberg T, Katus H (2011) Troponin elevation in coronary vs. non-coronary disease. Eur Heart J 32:404–411

    CAS  PubMed  Google Scholar 

  38. Tsutamoto T, Kawahara C, Yamaji M, Nishiyama K, Fujii M, Yamamoto T et al (2009) Relationship between renal function and serum cardiac troponin T in patients with chronic heart failure. Eur J Heart Fail 11:653–658

    CAS  PubMed  Google Scholar 

  39. Jaffe AS, Vasile VC, Milone M, Saenger AK, Olson KN, Apple FS (2011) Diseased skeletal muscle: a noncardiac source of increased circulating concentrations of cardiac troponin T. J Am Coll Cardiol 58:1819–1824

    PubMed  Google Scholar 

  40. La Vecchia L, Mezzena G, Ometto R, Finocchi G, Bedogni F, Soffiati G, Vincenzi M (1997) Detectable serum troponin I in patients with heart failure of nonmyocardial ischemic origin. Am J Cardiol 80:88–90

    PubMed  Google Scholar 

  41. Missov E, Calzolari C, Pau B (1997) Circulating cardiac troponin I in severe congestive heart failure. Circulation 96:2953–2958

    CAS  PubMed  Google Scholar 

  42. Tsutamoto T, Kawahara C, Nishiyama K, Yamaji M, Fujii M, Yamamoto T et al (2010) Prognostic role of highly sensitive cardiac troponin I in patients with systolic heart failure. Am Heart J 159:63–67

    CAS  PubMed  Google Scholar 

  43. Ilva T, Lassus J, Siirilä-Waris K, Melin J, Peuhkurinen K, Pulkki K et al (2008) Clinical significance of cardiac troponins I and T in acute heart failure. Eur J Heart Fail 10:772–779

    CAS  PubMed  Google Scholar 

  44. Latini R, Masson S, Anand IS, Missov E, Carlson M, Vago T et al (2007) Prognostic value of very low plasma concentrations of troponin T in patients with stable chronic heart failure. Circulation 116:1242–1249

    CAS  PubMed  Google Scholar 

  45. Januzzi JL Jr, Filippatos G, Nieminen M, Gheorghiade M (2012) Troponin elevation in patients with heart failure: on behalf of the third universal definition of myocardial infarction global task force: heart failure section. Eur Heart J 33:2265–2271

    CAS  PubMed  Google Scholar 

  46. Egstrup M, Schou M, Tuxen CD, Kistorp CN, Hildebrandt PR, Gustafsson F, Faber J, Goetze JP, Gustafsson I (2012) Prediction of outcome by highly sensitive troponin T in outpatients with chronic systolic left ventricular heart failure. Am J Cardiol 110:552–557

    CAS  PubMed  Google Scholar 

  47. Masson S, Anand I, Favero C, Barlera S, Vago T, Bertocchi F et al (2012) Serial measurement of cardiac troponin T using a highly sensitive assay in patients with chronic heart failure: data from 2 large randomized clinical trials. Circulation 125:280–288

    CAS  PubMed  Google Scholar 

  48. Dinh W, Nickl W, Füth R, Lankisch M, Hess G, Zdunek D et al (2011) High sensitive troponin T and heart fatty acid binding protein: novel biomarker in heart failure with normal ejection fraction? A cross-sectional study. BMC Cardiovasc Disord 11:41

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Parissis JT, Ikonomidis I, Rafouli-Stergiou P, Mebazaa A, Delgado J, Farmakis D, Vilas-Boas F, Paraskevaidis I, Anastasiou-Nana M, Follath F (2011) Clinical characteristics and predictors of in-hospital mortality in acute heart failure with preserved left ventricular ejection fraction. Am J Cardiol 107:79–84

    PubMed  Google Scholar 

  50. Xue Y, Clopton P, Peacock WF, Maisel AS (2011) Serial changes in high-sensitive troponin I predict outcome in patients with decompensated heart failure. Eur J Heart Fail 13:37–42

    CAS  PubMed  Google Scholar 

  51. Felker GM, Hasselblad V, Tang WH, Hernandez AF, Armstrong PW, Fonarow GC, Voors AA, Metra M, McMurray JJ, Butler J, Heizer GM, Dickstein K, Massie BM, Atar D, Troughton RW, Anker SD, Califf RM, Starling RC, O’Connor CM (2012) Troponin I in acute decompensated heart failure: insights from the ASCEND-HF study. Eur J Heart Fail 14:1257–1264

    CAS  PubMed  Google Scholar 

  52. Pascual-Figal DA, Casas T, Ordonez-Llanos J, Manzano-Fernández S, Bonaque JC, Boronat M, Muñoz-Esparza C, Valdés M, Januzzi JL (2012) Highly sensitive troponin T for risk stratification of acutely destabilized heart failure. Am Heart J 163:1002–1010

    CAS  PubMed  Google Scholar 

  53. Peacock WF 4th, De Marco T, Fonarow GC, Diercks D, Wynne J, Apple FS, Wu AH (2008) ADHERE investigators. Cardiac troponin and outcome in acute heart failure. N Engl J Med 358:2117–2126

    CAS  PubMed  Google Scholar 

  54. Arenja N, Reichlin T, Drexler B, Oshima S, Denhaerynck K, Haaf P, Potocki M, Breidthardt T, Noveanu M, Stelzig C, Heinisch C, Twerenbold R, Reiter M, Socrates T, Mueller C (2012) Sensitive cardiac troponin in the diagnosis and risk stratification of acute heart failure. J Intern Med 271:598–607

    CAS  PubMed  Google Scholar 

  55. deFilippi CR, de Lemos JA, Christenson RH, Gottdiener JS, Kop WJ, Zhan M et al (2010) Association of serial measures of cardiac troponin T using a sensitive assay with incident heart failure and cardiovascular mortality in older adults. JAMA 304:2494–2502

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Miller WL, Hartman KA, Burritt MF, Grill DE, Jaffe AS (2009) Profiles of serial changes in cardiac troponin T concentrations and outcome in ambulatory patients with chronic heart failure. J Am Coll Cardiol 54:1715–1721

    CAS  PubMed  Google Scholar 

  57. Kawahara C, Tsutamoto T, Sakai H, Nishiyama K, Yamaji M, Fujii M et al (2011) Prognostic value of serial measurements of highly sensitive cardiac troponin I in stable outpatients with nonischemic chronic heart failure. Am Heart J 162:639–645

    CAS  PubMed  Google Scholar 

  58. O’Connor CM, Fiuzat M, Lombardi C, Fujita K, Jia G, Davison BA et al (2011) Impact of serial troponin release on outcomes in patients with acute heart failure: analysis from the PROTECT pilot study. Circ Heart Fail 4:724–732

    PubMed  Google Scholar 

  59. Gaggin HK, Januzzi JL Jr (2012) What is the role of serial high-sensitivity troponin measurements in chronic heart failure? Clin Chem 58:1079–1081

    CAS  PubMed  Google Scholar 

  60. Bagshaw S, Cruz DN, Aspromonte N, Daliento L, Ronco F, Sheinfeld G, Anker SD, Anand I, Bellomo R, Berl T, Bobek I, Davenport A, Haapio M, Hillege H, House A, Katz N, Maisel A, Mankad S, McCullough PA, Mebazaa A, Palazzuoli A, Ponikowski P, Shaw A, Soni S, Vescovo G, Zamperetti N, Zanco P, Ronco C; Acute Dialysis Quality Initiative (ADQI) Consensus Group (2010) Epidemiology of cardio-renal syndromes: workgroup statements from the 7th ADQI consensus conference. Nephrol Dial Transplant 25(5):1406–16

    Google Scholar 

  61. Hillege HL, Girbes AR, de Kamp J, Boomsma F, De Zeeuw D et al (2000) Renal function neurohormonal activation and survival in patients with chronic heart failure. Circulation 102:203–210

    CAS  PubMed  Google Scholar 

  62. Palazzuoli A, Beltrami M, Nodari S, McCullough PA, Ronco C (2011) Clinical impact of renal dysfunction in heart failure. Rev Cardiovasc Med 12:186–199

    PubMed  Google Scholar 

  63. Cruz DN, Gheorghiade M, Palazzuoli A, Ronco C, Bagshaw SM (2011) Epidemiology and outcome in cardio-renal syndrome. Heart Fail Rev 16:531–542

    PubMed  Google Scholar 

  64. Damman K, Voors AA, Navis G, van Veldhuisen DJ, Hillege HL (2011) The cardiorenal syndrome in heart failure. Prog Cardiovasc Dis 54:144–153

    PubMed  Google Scholar 

  65. House AA, Anand I, Bellomo R, Cruz D, Bobek I, Anker S et al (2010) Definition and classification of cardio-renal syndromes: workgroup statements from the 7th ADQI consensus conference. Nephrol Dial Transplant 25:1416–1420

    PubMed  Google Scholar 

  66. Ronco C, Cicoira MA, McCullough PA (2012) Cardiorenal syndrome type 1: pathophysiological crosstalk leading to combined heart and kidney dysfunction in the setting of acutely decompensated heart failure. J Am Coll Cardiol 60:1031–1042

    PubMed  Google Scholar 

  67. Tang WH, Mullens W (2010) Cardiorenal syndrome in decompensated heart failure. Heart 96:255–260

    PubMed  Google Scholar 

  68. Damman K, Navis G, Voors AA, Asselbergs FW et al (2007) Worsening renal function and prognosis in heart failure: a systematic review and meta-analysis. J Cardiac Fail 13:599–608

    Google Scholar 

  69. Lamb EJ, Tomson CR, Roderick PJ (2005) Estimating kidney function in adults using formulae. Ann Clin Biochem 42:321–345

    PubMed  Google Scholar 

  70. Metra M, Davison B, Bettari L, Sun H, Edwards C, Lazzarini V et al (2012) Is worsening renal function an ominous prognostic sign in patients with acute heart failure? The role of congestion and its interaction with renal function. Circ Heart Fail 5:54–62

    PubMed  Google Scholar 

  71. Cruz N, Goh CY, Palazzuoli A, Slavin L, Ronco C, Maisel A (2011) Laboratory parameters of cardiac and kidney dysfunction in cardiorenal syndromes. Heart Fail Rev 16:545–551

    CAS  PubMed  Google Scholar 

  72. Testani JM, Coca SG, Shannon RP, Kimmel SE, Coppola TP (2011) Influence of renal dysfunction phenotype on mortality in the setting of cardiac dysfunction: analysis of three randomized controlled trials. Eur J Heart Fail 13:1224–1230

    PubMed  Google Scholar 

  73. Kazory A (2010) Emergence of blood nitrogen urea as a biomarker of neurohormonal activation in heart failure. Am J Cardiol 106:694–700

    CAS  PubMed  Google Scholar 

  74. Schiffrin EL, Lipman ML, Mann JF (2007) Chronic kidney disease: effects on the cardiovascular system. Circulation 116(1):85–97

    PubMed  Google Scholar 

  75. Jackson CE, Solomon SD, Gerstein HC, Zetterstrand S, Olofsson B, Michelson EL, Granger CB, Swedberg K, Pfeffer MA, Yusuf S, McMurray JJ (2009) CHARM Investigators and Committees. Albuminuria in chronic heart failure: prevalence and prognostic importance. Lancet 374:543–550

    CAS  PubMed  Google Scholar 

  76. Masson S, Latini R, Milani V, Moretti L, Rossi MG, Carbonieri E, Frisinghelli A, Minneci C, Valisi M, Maggioni AP, Marchioli R, Tognoni G, Tavazzi L; GISSI-HF Investigators (2010) Prevalence and prognostic value of elevated urinary albumin excretion in patients with chronic heart failure: data from the GISSI-Heart Failure trial. Circ Heart Fail 3:65–72

  77. Astor BC, Matsushita K, Gansevoort RT, van der Velde M, Woodward M, Levey AS (2011) Lower estimated glomerular filtration rate and higher albuminuria are associated with mortality and end-stage renal disease. A collaborative meta-analysis of kidney disease population cohorts. Kidney Int 79:1331–1340

    CAS  PubMed  Google Scholar 

  78. Wagener G, Gubitosa G, Wang S, Borregaard N, Kim M, Lee HT (2008) Urinary neutrophil gelatinase-associated lipocalin and acute kidney injury after cardiac surgery. Am J Kidney Dis 52:425–433

    CAS  PubMed  Google Scholar 

  79. Yndestad A, Landrø L, Ueland T, Dahl CP, Flo TH, Vinge LE, Espevik T, Frøland SS, Husberg C, Christensen G, Dickstein K, Kjekshus J, Øie E, Gullestad L, Aukrust P (2009) Increased systemic and myocardial expression of neutrophil gelatinase-associated lipocalin in clinical and experimental heart failure. Eur Heart J 30:1229–1236

    CAS  PubMed  Google Scholar 

  80. Aghel A, Shrestha K, Mullens W, Borowski A, Tang WH (2010) Serum neutrophil gelatinase-associated lipocalin (NGAL) in predicting worsening renal function in acute decompensated heart failure. J Card Fail 16:49–54

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Maisel AS, Mueller C, Fitzgerald R, Brikhan R, Hiestand BC, Iqbal N, Clopton P, van Veldhuisen DJ (2011) Prognostic utility of plasma neutrophil gelatinase-associated lipocalin in patients with acute heart failure: the NGAL EvaLuation Along with B-type NaTriuretic Peptide in acutely decompensated heart failure (GALLANT) trial. Eur J Heart Fail 13:846–851

    CAS  PubMed  Google Scholar 

  82. Poniatowski B, Malyszko J, Bachorzewska-Gajewska H, Malyszko JS, Dobrzycki S (2009) Serum neutrophil gelatinase-associated lipocalin as a marker of renal function in patients with chronic heart failure and coronary artery disease. Kidney Blood Press Res 32:77–80

    CAS  PubMed  Google Scholar 

  83. Alvelos M, Pimentel R, Pinho E, Gomes A, Lourenço P, Teles MJ, Almeida P, Guimarães JT, Bettencourt P (2011) Neutrophil gelatinase-associated lipocalin in the diagnosis of type 1 cardio-renal syndrome in the general ward. Clin J Am Soc Nephrol 6:476–481

    CAS  PubMed  Google Scholar 

  84. Herget-Rosenthal S, Marggraf G, Hüsing J et al (2004) Early detection of acute renal failure by serum cystatin C. Kidney Int 66:1115–1122

    CAS  PubMed  Google Scholar 

  85. Carrasco-Sanchez FJ, Galisteo-Almeda L, Paez-Rubio I, Martinez-Marcos FJ, Camacho-Vazquez C, Ruiz-Frutos C et al (2011) Prognostic value of cystatin C on admission in heart failure with preserved ejection fraction. J Card Fail 17:31–38

    CAS  PubMed  Google Scholar 

  86. Han WK, Bailly V, Abichandani R et al (2002) Kidney injury molecule-1 (KIM-1): a novel biomarker for human renal proximal tubule injury. Kidney Int 62:237–244

    CAS  PubMed  Google Scholar 

  87. Liangos O, Perianayagam M (2007) Urinay NAG activity and KIM-1 level are associated with adverse outcomes in acute renal failure. JASN 18:904–912

    CAS  PubMed  Google Scholar 

  88. Damman K, Masson S, Hillege HL, Maggioni AP, Voors AA, Opasich C, van Veldhuisen DJ, Montagna L, Cosmi F, Tognoni G, Tavazzi L, Latini R (2011) Clinical outcome of renal tubular damage in chronic heart failure. Eur Heart J 32:2705–2712

    CAS  PubMed  Google Scholar 

  89. Parikh CR, Abraham E, Ancukiewicz M et al (2005) Urine IL-18 is an early diagnostic marker for acute kidney injury and predicts mortality in the intensive care unit. J Am Soc Nephrol 16:3046–3052

    CAS  PubMed  Google Scholar 

  90. Cruz D, Fard A, Clementi A, Ronco C, Maisel A (2012) Role of biomarkers in the diagnosis and management of cardio renal syndrome. Semin Nephrol 32:79–92

    CAS  PubMed  Google Scholar 

  91. McCullough PA, Duc P, Omland T, McCord J, Nowak RM, Hollander JE et al (2003) B-type natriuretic peptide and renal function in the diagnosis of heart failure: an analysis from the Breathing Not Properly Multinational Study. Am J Kidney Dis 41:571–579

    CAS  PubMed  Google Scholar 

  92. Park S, Cho GY, Kim SG, Hwang YI, Kang HR et al (2009) Brain natriuretic peptide levels have diagnostic and prognostic capability for cardio-renal syndrome type 4 in intensive care unit patients. Crit Care 13:1–11

    Google Scholar 

  93. Lamb EJ, Kenny C, Abbas NA, John RI, Webb MC, Price CP, Vickery S (2007) Cardiac troponin I concentration is commonly increased in nondialysis patients with CKD: experience with a sensitive assay. Am J Kidney Dis 49:507–716

    CAS  PubMed  Google Scholar 

  94. Abbas NA, John RI, Webb MC, Kempson ME, Potter AN, Price CP, Vickery S, Lamb EJ (2005) Cardiac troponins and renal function in nondialysis patients with chronic kidney disease. Clin Chem 51:2059–2066

    CAS  PubMed  Google Scholar 

  95. Freda BJ, Tang WH, Van Lente F, Peacock WF, Francis GS (2002) Cardiac troponins in renal insufficiency: review and clinical implications. J Am Coll Cardiol 40:2065–2071

    CAS  PubMed  Google Scholar 

  96. Aviles RJ, Askari AT, Lindahl B, Wallentin L, Jia G, Ohman EM, Mahaffey KW, Newby LK, Califf RM, Simoons ML, Topol EJ, Berger P, Lauer MS (2002) Troponin T levels in patients with acute coronary syndromes, with or without renal dysfunction. N Engl J Med 346:2047–2052

    CAS  PubMed  Google Scholar 

  97. Scheven L, de Jong PE, Hillege HL, Lambers Heerspink HJ, van Pelt LJ, Kootstra JE, Bakker SJ, Gansevoort RT; PREVEND study group (2012) High-sensitive troponin T and N-terminal pro-B type natriuretic peptide are associated with cardiovascular events despite the cross-sectional association with albuminuria and glomerular filtration rate. Eur Heart J 33:2272–2281

    Google Scholar 

  98. McGill D, Talaulikar G, Potter JM, Koerbin G, Hickman PE (2010) Over time, high-sensitivity TnT replaces NT-proBNP as the most powerful predictor of death in patients with dialysis-dependent chronic renal failure. Clin Chim Acta 411:936–939

    CAS  PubMed  Google Scholar 

  99. Gaiki MR, Devita MV, Michelis MF, Panagopoulos G, Rosenstock JL (2012) Troponin I as a prognostic marker of cardiac events in asymptomatic hemodialysis patients using a sensitive troponin I assay. Int Urol Nephrol 44:1841–1845

    CAS  PubMed  Google Scholar 

  100. deFilippi C, Seliger SL, Kelley W, Duh SH, Hise M, Christenson RH, Wolf M, Gaggin H, Januzzi J (2012) Interpreting cardiac troponin results from high-sensitivity assays in chronic kidney disease without acute coronary syndrome. Clin Chem 58:1342–1351

    CAS  PubMed  Google Scholar 

  101. Hasegawa M, Ishii J, Kitagawa F, Kanayama K, Takahashi H, Ozaki Y, Yuzawa Y (2012). Prognostic value of highly sensitive troponin T on cardiac events in patients with chronic kidney disease not on dialysis. Heart Vessels. 2012 Aug 23 [Epub ahead of print] PubMed PMID: 22914904

  102. Faul C, Amaral AP, Oskouei B, Hu MC, Sloan A, Isakova T, Gutiérrez OM, Aguillon-Prada R, Lincoln J, Hare JM, Mundel P, Morales A, Scialla J, Fischer M, Soliman EZ, Chen J, Go AS, Rosas SE, Nessel L, Townsend RR, Feldman HI, St John Sutton M, Ojo A, Gadegbeku C, Di Marco GS, Reuter S, Kentrup D, Tiemann K, Brand M, Hill JA, Moe OW, Kuro-O M, Kusek JW, Keane MG, Wolf M (2011) FGF23 induces left ventricular hypertrophy. J Clin Invest 121:4393–4408

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Ix JH, Katz R, Kestenbaum BR, de Boer IH, Chonchol M, Mukamal KJ, Rifkin D, Siscovick DS, Sarnak MJ, Shlipak MG (2012) Fibroblast growth factor-23 and death, heart failure, and cardiovascular events in community-living individuals: CHS (Cardiovascular Health Study). J Am Coll Cardiol 60:200–207

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Smith K, Defilippi C, Isakova T, Gutiérrez OM, Laliberte K, Seliger S, Kelley W, Duh SH, Hise M, Christenson R, Wolf M, Januzzi J (2012) Fibroblast growth factor 23, high-sensitivity cardiac troponin, and left ventricular hypertrophy in CKD. Am J Kidney Dis 2012 Aug 7 [Epub ahead of print] PubMed PMID: 22883134

  105. Gutiérrez OM, Januzzi JL, Isakova T, Laliberte K, Smith K, Collerone G, Sarwar A, Hoffmann U, Coglianese E, Christenson R, Wang TJ, deFilippi C, Wolf M (2009) Fibroblast growth factor 23 and left ventricular hypertrophy in chronic kidney disease. Circulation 119:2545–2552

    PubMed Central  PubMed  Google Scholar 

  106. Negishi K, Kobayashi M, Ochiai I, Yamazaki Y, Hasegawa H, Yamashita T, Shimizu T, Kasama S, Kurabayashi M (2010) Association between fibroblast growth factor 23 and left ventricular hypertrophy in maintenance hemodialysis patients. Comparison with B-type natriuretic peptide and cardiac troponin T. Circ J 74:2734–2740

    CAS  PubMed  Google Scholar 

  107. Holden RM, Beseau D, Booth SL, Adams MA, Garland JS, Morton RA, Collier CP, Foley RN (2012) FGF-23 is associated with cardiac troponin T and mortality in hemodialysis patients. Hemodial Int 16:53–58

    PubMed  Google Scholar 

  108. Isakova T, Xie H, Yang W, Xie D, Anderson AH, Scialla J, Wahl P, Gutiérrez OM, Steigerwalt S, He J, Schwartz S, Lo J, Ojo A, Sondheimer J, Hsu CY, Lash J, Leonard M, Kusek JW, Feldman HI, Wolf M; Chronic Renal Insufficiency Cohort (CRIC) Study Group (2011) Fibroblast growth factor 23 and risks of mortality and end-stage renal disease in patients with chronic kidney disease. JAMA 305:2432–2439

    Google Scholar 

  109. Seiler S, Reichart B, Roth D, Seibert E, Fliser D, Heine GH (2010) FGF-23 and future cardiovascular events in patients with chronic kidney disease before initiation of dialysis treatment. Nephrol Dial Transplant 25:3983–3989

    CAS  PubMed  Google Scholar 

  110. Gutiérrez OM, Mannstadt M, Isakova T, Rauh-Hain JA, Tamez H, Shah A, Smith K, Lee H, Thadhani R, Jüppner H, Wolf M (2008) Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis. N Engl J Med 359:584–592

    PubMed Central  PubMed  Google Scholar 

  111. Felker MG (2011) Biomarkers as a surrogate end points in heart failure trials. Heart Fail Clin 7:501–507

    PubMed  Google Scholar 

  112. Ky B, French B, Levy WC, Sweitzer NK, Fang JC, Wu AH, Goldberg LR, Jessup M, Cappola TP (2012) Multiple biomarkers for risk prediction in chronic heart failure. Circ Hear Fail 5:183–190

    CAS  Google Scholar 

  113. Lainchbury JG, Troughton RW, Strangman KM, Frampton CM, Pilbrow A, Yandle TG, Hamid AK, Nicholls MG, Richards AM (2009) N-terminal pro-B-type natriuretic peptide-guided treatment for chronic heart failure: results from BATTLESCARRED trial. J Am Coll Cardiol 55:53–60

    PubMed  Google Scholar 

  114. Pfisterer M, Buser P, Rickli H, Gutmann M, Erna P, Rickenbacher P, Vuillomenet A, Jeker U, Tubach P, Beer H, Yoon SI, Suter T, Osterhues HH, Schieber MM, Hilti P, Schindler R, Brunner-LaRocca HP (2009) BNP guided vs symptom-guided heart failure therapy: the Trial of intensified vs standard medical therapy in elderly patients with congestive heart failure (TIME-CHF) randomized trial. JAMA 301:383–392

    CAS  PubMed  Google Scholar 

  115. Savarese G, Trimarco B, Dellegrottaglie S, Prastaro M, Gambardella F, Rengo G, Leosco D, Perrone-Filardi P (2013) Natriuretic Peptide-guided therapy in chronic heart failure: a meta-analysis of 2,686 patients in 12 randomized trials. PLoS ONE 8:e58287. doi:10.1371/journal.pone.0058287

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Levy M, Heels-Ansdell D, Hiralal R, Bhandari M, Guyatt G, Yusuf S, Cook D, Villar JC, McQueen M, McFalls E, Filipovic M, Schünemann H, Sear J, Foex P, Lim W, Landesberg G, Godet G, Poldermans D, Bursi F, Kertai MD, Bhatnagar N, Devereaux PJ (2011) Prognostic value of troponin and creatine kinase muscle and brain isoenzyme measurement after noncardiac surgery: a systematic review and meta-analysis. Anesthesiology 114:796–806

    CAS  PubMed  Google Scholar 

  117. Babu GG, Walker JM, Yellon DM, Hausenloy DJ (2011) Peri-procedural myocardial injury during percutaneous coronary intervention: an important target for cardioprotection. Eur Heart J 32:23–31

    CAS  PubMed  Google Scholar 

  118. Nagarajan V, Hernandez AV, Tang WH (2012) Prognostic value of cardiac troponin in chronic stable heart failure: a systematic review. Heart 98:1778–1786

    PubMed  Google Scholar 

  119. Barlera S, Tavazzi L, Franzosi MG, Marchioli R, Raimondi E, Masson S, Urso R, Lucci D, Nicolosi GL, Maggioni AP, Tognoni G, GISSI-HF Investigators (2013) Predictors of mortality in 6975 patients with chronic heart failure in the Gruppo Italiano per lo Studio della Streptochinasi nell’Infarto Miocardico-Heart Failure trial: proposal for a nomogram. Circ Heart Fail 6:31–39

    CAS  PubMed  Google Scholar 

  120. Januzzi JL, Troughton R (2013) Are serial BNP measurements useful in heart failure management? Serial natriuretic peptide measurements are useful in heart failure management. Circulation 127:500–508

    PubMed  Google Scholar 

  121. Desai AS (2013) Are serial BNP measurements useful in heart failure management? Serial natriuretic peptide measurements are not useful in heart failure management: the art of medicine remains long. Circulation 127:509–516

    PubMed  Google Scholar 

  122. Dunlay SM, Gerber Y, Weston SA, Killian JM, Redfield MM, Roger VL (2009) Prognostic value of biomarker in heart failure application of novel methods in the community. Circ Heart Fail 2:393–400

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Palazzuoli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palazzuoli, A., Masson, S., Ronco, C. et al. Clinical relevance of biomarkers in heart failure and cardiorenal syndrome: the role of natriuretic peptides and troponin. Heart Fail Rev 19, 267–284 (2014). https://doi.org/10.1007/s10741-013-9391-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-013-9391-x

Keywords

Navigation