Skip to main content
Log in

Animal models of heart failure with preserved ejection fraction (HFpEF): from metabolic pathobiology to drug discovery

  • Review Article
  • Published:
Acta Pharmacologica Sinica Submit manuscript

Abstract

Heart failure (HF) with preserved ejection fraction (HFpEF) is currently a preeminent challenge for cardiovascular medicine. It has a poor prognosis, increasing mortality, and is escalating in prevalence worldwide. Despite accounting for over 50% of all HF patients, the mechanistic underpinnings driving HFpEF are poorly understood, thus impeding the discovery and development of mechanism-based therapies. HFpEF is a disease syndrome driven by diverse comorbidities, including hypertension, diabetes and obesity, pulmonary hypertension, aging, and atrial fibrillation. There is a lack of high-fidelity animal models that faithfully recapitulate the HFpEF phenotype, owing primarily to the disease heterogeneity, which has hampered our understanding of the complex pathophysiology of HFpEF. This review provides an updated overview of the currently available animal models of HFpEF and discusses their characteristics from the perspective of energy metabolism. Interventional strategies for efficiently utilizing energy substrates in preclinical HFpEF models are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Risk factors, species of choice, and key hallmarks of preclinical HFpEF models.
Fig. 2: A systematic overview of glucose, fatty acids and ketone body metabolism in the HFpEF heart.
Fig. 3: Therapeutic approaches targeting metabolic derangement in HFpEF.

Similar content being viewed by others

References

  1. McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Bohm M, et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: Developed by the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). With the special contribution of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail. 2022;24:4–131.

    Article  PubMed  Google Scholar 

  2. Anderson T, Hummel SL, Konerman MC. Epidemiology, diagnosis, pathophysiology, and initial approach to heart failure with preserved ejection fraction. Cardiol Clin. 2022;40:397–413.

    Article  PubMed  Google Scholar 

  3. Shahim A, Hourqueig M, Lund LH, Savarese G, Oger E, Venkateshvaran A, et al. Long-term outcomes in heart failure with preserved ejection fraction: Predictors of cardiac and non-cardiac mortality. ESC Heart Fail. 2023;10:1835–46.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Shah SJ. Precision medicine for heart failure with preserved ejection fraction: an overview. J Cardiovasc Transl Res. 2017;10:233–44.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Shah SJ, Kitzman DW, Borlaug BA, van Heerebeek L, Zile MR, Kass DA, et al. Phenotype-specific treatment of heart failure with preserved ejection fraction: a multiorgan roadmap. Circulation. 2016;134:73–90.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Galli E, Bourg C, Kosmala W, Oger E, Donal E. Phenomapping heart failure with preserved ejection fraction using machine learning cluster analysis: prognostic and therapeutic implications. Heart Fail Clin. 2021;17:499–518.

    Article  PubMed  Google Scholar 

  7. Butler J, Handelsman Y, Bakris G, Verma S. Use of sodium-glucose co-transporter-2 inhibitors in patients with and without type 2 diabetes: implications for incident and prevalent heart failure. Eur J Heart Fail. 2020;22:604–17.

    Article  CAS  PubMed  Google Scholar 

  8. Grubic Rotkvic P, Cigrovski Berkovic M, Bulj N, Rotkvic L, Celap I. Sodium-glucose cotransporter 2 inhibitors’ mechanisms of action in heart failure. World J Diabetes. 2020;11:269–79.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Savarese G, Butler J, Lund LH, Bhatt DL, Anker SD. Cardiovascular effects of non-insulin glucose-lowering agents: a comprehensive review of trial evidence and potential cardioprotective mechanisms. Cardiovasc Res. 2022;118:2231–52.

    Article  CAS  PubMed  Google Scholar 

  10. Fukuta H, Goto T, Wakami K, Ohte N. The effect of statins on mortality in heart failure with preserved ejection fraction: a meta-analysis of propensity score analyses. Int J Cardiol. 2016;214:301–6.

    Article  PubMed  Google Scholar 

  11. Riehle C, Bauersachs J. Small animal models of heart failure. Cardiovasc Res. 2019;115:1838–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Miyagi C, Miyamoto T, Kuroda T, Karimov JH, Starling RC, Fukamachi K. Large animal models of heart failure with preserved ejection fraction. Heart Fail Rev. 2022;27:595–608.

    Article  PubMed  Google Scholar 

  13. Holjak EJB, Savinova I, Nelson VL, Ogilvie LM, Ng AM, Edgett BA, et al. An evaluation of cardiac health in the spontaneously hypertensive rat colony: implications of evolutionary driven increases in concentric hypertrophy. Am J Hypertens. 2022;35:264–71.

    Article  PubMed  Google Scholar 

  14. Marzak H, Ayme-Dietrich E, Lawson R, Mokni W, Combe R, Becker J, et al. Old spontaneously hypertensive rats gather together typical features of human chronic left-ventricular dysfunction with preserved ejection fraction. J Hypertens. 2014;32:1307–16.

    Article  CAS  PubMed  Google Scholar 

  15. Wang J, Li Z, Wang Y, Zhang J, Zhao W, Fu M, et al. Qiliqiangxin enhances cardiac glucose metabolism and improves diastolic function in spontaneously hypertensive rats. Evid Based Complement Altern Med. 2017;2017:3197320.

    Article  Google Scholar 

  16. Rockman HA, Ross RS, Harris AN, Knowlton KU, Steinhelper ME, Field LJ, et al. Segregation of atrial-specific and inducible expression of an atrial natriuretic factor transgene in an in vivo murine model of cardiac hypertrophy. Proc Natl Acad Sci USA. 1991;88:8277–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Schnelle M, Catibog N, Zhang M, Nabeebaccus AA, Anderson G, Richards DA, et al. Echocardiographic evaluation of diastolic function in mouse models of heart disease. J Mol Cell Cardiol. 2018;114:20–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Schwarzer M, Osterholt M, Lunkenbein A, Schrepper A, Amorim P, Doenst T. Mitochondrial reactive oxygen species production and respiratory complex activity in rats with pressure overload-induced heart failure. J Physiol. 2014;592:3767–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gibb AA, Murray EK, Eaton DM, Huynh AT, Tomar D, Garbincius JF, et al. Molecular signature of HFpEF: systems biology in a cardiac-centric large animal model. JACC Basic Transl Sci. 2021;6:650–72.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wallner M, Eaton DM, Berretta RM, Liesinger L, Schittmayer M, Gindlhuber J, et al. HDAC inhibition improves cardiopulmonary function in a feline model of diastolic dysfunction. Sci Transl Med. 2020;12:eaay7205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hiemstra JA, Lee DI, Chakir K, Gutierrez-Aguilar M, Marshall KD, Zgoda PJ, et al. Saxagliptin and tadalafil differentially alter cyclic guanosine monophosphate (cGMP) signaling and left ventricular function in aortic-banded mini-swine. J Am Heart Assoc. 2016;5:e003277.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Tan W, Li X, Zheng S, Zhang X, Pyle WG, Chen H, et al. A Porcine model of heart failure with preserved ejection fraction induced by chronic pressure overload characterized by cardiac fibrosis and remodeling. Front Cardiovasc Med. 2021;8:677727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Klotz S, Hay I, Zhang G, Maurer M, Wang J, Burkhoff D. Development of heart failure in chronic hypertensive Dahl rats: focus on heart failure with preserved ejection fraction. Hypertension. 2006;47:901–11.

    Article  CAS  PubMed  Google Scholar 

  24. Esposito G, Cappetta D, Russo R, Rivellino A, Ciuffreda LP, Roviezzo F, et al. Sitagliptin reduces inflammation, fibrosis and preserves diastolic function in a rat model of heart failure with preserved ejection fraction. Br J Pharmacol. 2017;174:4070–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nakajima Y, Ito S, Asakura M, Min KD, Fu HY, Imazu M, et al. A dipeptidyl peptidase-IV inhibitor improves diastolic dysfunction in Dahl salt-sensitive rats. J Mol Cell Cardiol. 2019;129:257–65.

    Article  CAS  PubMed  Google Scholar 

  26. Slater RE, Strom JG, Methawasin M, Liss M, Gotthardt M, Sweitzer N, et al. Metformin improves diastolic function in an HFpEF-like mouse model by increasing titin compliance. J Gen Physiol. 2019;151:42–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Methawasin M, Strom JG, Slater RE, Fernandez V, Saripalli C, Granzier H. Experimentally Increasing the Compliance of Titin Through RNA Binding Motif-20 (RBM20) Inhibition improves diastolic function in a mouse model of heart failure with preserved ejection fraction. Circulation. 2016;134:1085–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Krishnan SM, Ling YH, Huuskes BM, Ferens DM, Saini N, Chan CT, et al. Pharmacological inhibition of the NLRP3 inflammasome reduces blood pressure, renal damage, and dysfunction in salt-sensitive hypertension. Cardiovasc Res. 2019;115:776–87.

    Article  CAS  PubMed  Google Scholar 

  29. Reiter U, Reiter G, Manninger M, Adelsmayr G, Schipke J, Alogna A, et al. Early-stage heart failure with preserved ejection fraction in the pig: a cardiovascular magnetic resonance study. J Cardiovasc Magn Reson. 2016;18:63.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Dulce RA, Kanashiro-Takeuchi RM, Takeuchi LM, Salerno AG, Wanschel A, Kulandavelu S, et al. Synthetic growth hormone-releasing hormone agonist ameliorates the myocardial pathophysiology characteristic of heart failure with preserved ejection fraction. Cardiovasc Res. 2023;118:3586–601.

    Article  PubMed  Google Scholar 

  31. Mori J, Basu R, McLean BA, Das SK, Zhang L, Patel VB, et al. Agonist-induced hypertrophy and diastolic dysfunction are associated with selective reduction in glucose oxidation: a metabolic contribution to heart failure with normal ejection fraction. Circ Heart Fail. 2012;5:493–503.

    Article  CAS  PubMed  Google Scholar 

  32. Zhang N, Ma Q, You Y, Xia X, Xie C, Huang Y, et al. CXCR4-dependent macrophage-to-fibroblast signaling contributes to cardiac diastolic dysfunction in heart failure with preserved ejection fraction. Int J Biol Sci. 2022;18:1271–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cho NH, Shaw JE, Karuranga S, Huang Y, da Rocha Fernandes JD, Ohlrogge AW, et al. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pr. 2018;138:271–81.

    Article  CAS  Google Scholar 

  34. McHugh K, DeVore AD, Wu J, Matsouaka RA, Fonarow GC, Heidenreich PA, et al. Heart failure with preserved ejection fraction and diabetes: JACC state-of-the-art review. J Am Coll Cardiol. 2019;73:602–11.

    Article  PubMed  Google Scholar 

  35. Monma Y, Shindo T, Eguchi K, Kurosawa R, Kagaya Y, Ikumi Y, et al. Low-intensity pulsed ultrasound ameliorates cardiac diastolic dysfunction in mice: a possible novel therapy for heart failure with preserved left ventricular ejection fraction. Cardiovasc Res. 2021;117:1325–38.

    Article  CAS  PubMed  Google Scholar 

  36. Alex L, Russo I, Holoborodko V, Frangogiannis NG. Characterization of a mouse model of obesity-related fibrotic cardiomyopathy that recapitulates features of human heart failure with preserved ejection fraction. Am J Physiol Heart Circ Physiol. 2018;315:H934–H49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hammoudi N, Jeong D, Singh R, Farhat A, Komajda M, Mayoux E, et al. Empagliflozin improves left ventricular diastolic dysfunction in a genetic model of type 2 diabetes. Cardiovasc Drugs Ther. 2017;31:233–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sartori M, Conti FF, Dias DDS, Dos Santos F, Machi JF, Palomino Z, et al. Association between diastolic dysfunction with inflammation and oxidative stress in females ob/ob mice. Front Physiol. 2017;8:572.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Aroor AR, Mummidi S, Lopez-Alvarenga JC, Das N, Habibi J, Jia G, et al. Sacubitril/valsartan inhibits obesity-associated diastolic dysfunction through suppression of ventricular-vascular stiffness. Cardiovasc Diabetol. 2021;20:80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Matyas C, Nemeth BT, Olah A, Torok M, Ruppert M, Kellermayer D, et al. Prevention of the development of heart failure with preserved ejection fraction by the phosphodiesterase-5A inhibitor vardenafil in rats with type 2 diabetes. Eur J Heart Fail. 2017;19:326–36.

    Article  CAS  PubMed  Google Scholar 

  41. van den Brom CE, Bosmans JW, Vlasblom R, Handoko LM, Huisman MC, Lubberink M, et al. Diabetic cardiomyopathy in Zucker diabetic fatty rats: the forgotten right ventricle. Cardiovasc Diabetol. 2010;9:25.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Sharma S, Adrogue JV, Golfman L, Uray I, Lemm J, Youker K, et al. Intramyocardial lipid accumulation in the failing human heart resembles the lipotoxic rat heart. FASEB J. 2004;18:1692–700.

    Article  CAS  PubMed  Google Scholar 

  43. Tadinada SM, Weatherford ET, Collins GV, Bhardwaj G, Cochran J, Kutschke W, et al. Functional resilience of C57BL/6J mouse heart to dietary fat overload. Am J Physiol Heart Circ Physiol. 2021;321:H850–H64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Reddy SS, Agarwal H, Barthwal MK. Cilostazol ameliorates heart failure with preserved ejection fraction and diastolic dysfunction in obese and non-obese hypertensive mice. J Mol Cell Cardiol. 2018;123:46–57.

    Article  CAS  PubMed  Google Scholar 

  45. Hubesch G, Hanthazi A, Acheampong A, Chomette L, Lasolle H, Hupkens E, et al. A preclinical rat model of heart failure with preserved ejection fraction with multiple comorbidities. Front Cardiovasc Med. 2021;8:809885.

    Article  CAS  PubMed  Google Scholar 

  46. Dia M, Leon C, Chanon S, Bendridi N, Gomez L, Rieusset J, et al. Effect of metformin on T2D-induced MAM Ca2+ uncoupling and contractile dysfunction in an early mouse model of diabetic HFpEF. Int J Mol Sci. 2022;23:3569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Maurya SK, Carley AN, Maurya CK, Lewandowski ED. Western diet causes heart failure with reduced ejection fraction and metabolic shifts after diastolic dysfunction and novel cardiac lipid derangements. JACC Basic Transl Sci. 2023;8:422–35.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Wu X, Liu H, Brooks A, Xu S, Luo J, Steiner R, et al. SIRT6 mitigates heart failure with preserved ejection fraction in diabetes. Circ Res. 2022;131:926–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lin Y, Fu S, Yao Y, Li Y, Zhao Y, Luo L. Heart failure with preserved ejection fraction based on aging and comorbidities. J Transl Med. 2021;19:291.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Ackert-Bicknell CL, Anderson LC, Sheehan S, Hill WG, Chang B, Churchill GA, et al. Aging research using mouse models. Curr Protoc Mouse Biol. 2015;5:95–133.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Fanjul V, Jorge I, Camafeita E, Macias A, Gonzalez-Gomez C, Barettino A, et al. Identification of common cardiometabolic alterations and deregulated pathways in mouse and pig models of aging. Aging Cell. 2020;19:e13203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Roh JD, Houstis N, Yu A, Chang B, Yeri A, Li H, et al. Exercise training reverses cardiac aging phenotypes associated with heart failure with preserved ejection fraction in male mice. Aging Cell. 2020;19:e13159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hamdani N, Bishu KG, von Frieling-Salewsky M, Redfield MM, Linke WA. Deranged myofilament phosphorylation and function in experimental heart failure with preserved ejection fraction. Cardiovasc Res. 2013;97:464–71.

    Article  CAS  PubMed  Google Scholar 

  54. Zakeri R, Moulay G, Chai Q, Ogut O, Hussain S, Takahama H, et al. Left atrial remodeling and atrioventricular coupling in a canine model of early heart failure with preserved ejection fraction. Circ Heart Fail. 2016;9:e003238.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Shono A, Matsumoto K, Yamada N, Kusunose K, Suzuki M, Sumimoto K, et al. Accelerated aging” of the heart as heart failure with preserved ejection fraction-analysis using leg-positive pressure stress echocardiography. Int J Cardiovasc Imaging. 2021;37:2473–82.

    Article  PubMed  Google Scholar 

  56. Penumatsa KC, Falcao-Pires I, Leite S, Leite-Moreira A, Bhedi CD, Nasirova S, et al. Increased transglutaminase 2 expression and activity in rodent models of obesity/metabolic syndrome and aging. Front Physiol. 2020;11:560019.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Reed AL, Tanaka A, Sorescu D, Liu H, Jeong EM, Sturdy M, et al. Diastolic dysfunction is associated with cardiac fibrosis in the senescence-accelerated mouse. Am J Physiol Heart Circ Physiol. 2011;301:H824–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Koch SE, Haworth KJ, Robbins N, Smith MA, Lather N, Anjak A, et al. Age- and gender-related changes in ventricular performance in wild-type FVB/N mice as evaluated by conventional and vector velocity echocardiography imaging: a retrospective study. Ultrasound Med Biol. 2013;39:2034–43.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Haroon J, Foureaux G, Martins AS, Ferreira AJ, Reis AM, Javed Q. Gender differences in normal left ventricle of adult FVB/N mice due to variation in interleukins and natriuretic peptides expression levels. Cytokine. 2015;71:54–9.

    Article  CAS  PubMed  Google Scholar 

  60. Hacker TA, McKiernan SH, Douglas PS, Wanagat J, Aiken JM. Age-related changes in cardiac structure and function in Fischer 344 x Brown Norway hybrid rats. Am J Physiol Heart Circ Physiol. 2006;290:H304–11.

    Article  CAS  PubMed  Google Scholar 

  61. No MH, Heo JW, Yoo SZ, Kim CJ, Park DH, Kang JH, et al. Effects of aging and exercise training on mitochondrial function and apoptosis in the rat heart. Pflug Arch. 2020;472:179–93.

    Article  CAS  Google Scholar 

  62. Curl CL, Danes VR, Bell JR, Raaijmakers AJA, Ip WTK, Chandramouli C, et al. Cardiomyocyte functional etiology in heart failure with preserved ejection fraction is distinctive-a new preclinical model. J Am Heart Assoc. 2018;7:e007451.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Withaar C, Lam CSP, Schiattarella GG, de Boer RA, Meems LMG. Heart failure with preserved ejection fraction in humans and mice: embracing clinical complexity in mouse models. Eur Heart J. 2021;42:4420–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Nguyen ITN, Brandt MM, van de Wouw J, van Drie RWA, Wesseling M, Cramer MJ, et al. Both male and female obese ZSF1 rats develop cardiac dysfunction in obesity-induced heart failure with preserved ejection fraction. PLoS One. 2020;15:e0232399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Franssen C, Chen S, Unger A, Korkmaz HI, De Keulenaer GW, Tschope C, et al. Myocardial microvascular inflammatory endothelial activation in heart failure with preserved ejection fraction. JACC Heart Fail. 2016;4:312–24.

    Article  PubMed  Google Scholar 

  66. Summer G, Kuhn AR, Munts C, Miranda-Silva D, Leite-Moreira AF, Lourenco AP, et al. A directed network analysis of the cardiome identifies molecular pathways contributing to the development of HFpEF. J Mol Cell Cardiol. 2020;144:66–75.

    Article  CAS  PubMed  Google Scholar 

  67. Brandt MM, Nguyen ITN, Krebber MM, van de Wouw J, Mokry M, Cramer MJ, et al. Limited synergy of obesity and hypertension, prevalent risk factors in onset and progression of heart failure with preserved ejection fraction. J Cell Mol Med. 2019;23:6666–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Schauer A, Draskowski R, Jannasch A, Kirchhoff V, Goto K, Mannel A, et al. ZSF1 rat as animal model for HFpEF: development of reduced diastolic function and skeletal muscle dysfunction. ESC. Heart Fail. 2020;7:2123–34.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Hohendanner F, Bode D, Primessnig U, Guthof T, Doerr R, Jeuthe S, et al. Cellular mechanisms of metabolic syndrome-related atrial decompensation in a rat model of HFpEF. J Mol Cell Cardiol. 2018;115:10–9.

    Article  CAS  PubMed  Google Scholar 

  70. Murase T, Hattori T, Ohtake M, Abe M, Amakusa Y, Takatsu M, et al. Cardiac remodeling and diastolic dysfunction in DahlS.Z-Lepr(fa)/Lepr(fa) rats: a new animal model of metabolic syndrome. Hypertens Res. 2012;35:186–93.

    Article  CAS  PubMed  Google Scholar 

  71. Takatsu M, Nakashima C, Takahashi K, Murase T, Hattori T, Ito H, et al. Calorie restriction attenuates cardiac remodeling and diastolic dysfunction in a rat model of metabolic syndrome. Hypertension. 2013;62:957–65.

    Article  CAS  PubMed  Google Scholar 

  72. McPherson KC, Taylor L, Johnson AC, Didion SP, Geurts AM, Garrett MR, et al. Early development of podocyte injury independently of hyperglycemia and elevations in arterial pressure in nondiabetic obese Dahl SS leptin receptor mutant rats. Am J Physiol Ren Physiol. 2016;311:F793–F804.

    Article  CAS  Google Scholar 

  73. Poudel B, Shields CA, Brown AK, Ekperikpe U, Johnson T, Cornelius DC, et al. Depletion of macrophages slows the early progression of renal injury in obese Dahl salt-sensitive leptin receptor mutant rats. Am J Physiol Ren Physiol. 2020;318:F1489–F99.

    Article  CAS  Google Scholar 

  74. Beyer AM, Raffai G, Weinberg B, Fredrich K, Lombard JH. Dahl salt-sensitive rats are protected against vascular defects related to diet-induced obesity. Hypertension. 2012;60:404–10.

    Article  CAS  PubMed  Google Scholar 

  75. Watts SW, Darios ES, Contreras GA, Garver H, Fink GD. Male and female high-fat diet-fed Dahl SS rats are largely protected from vascular dysfunctions: PVAT contributions reveal sex differences. Am J Physiol Heart Circ Physiol. 2021;321:H15–H28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Dubroca C, Costard C, Maupoint J, Waget A, Brousseau E, Briand F, et al. A promising rat model of heart failure with preserved ejection fraction associated to multiple comorbidities. Eur Heart J. 2022;43:2947.

    Article  Google Scholar 

  77. Taylor LE, Gillis EE, Musall JB, Baban B, Sullivan JC. High-fat diet-induced hypertension is associated with a proinflammatory T cell profile in male and female Dahl salt-sensitive rats. Am J Physiol Heart Circ Physiol. 2018;315:H1713–H23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Piek A, Koonen DPY, Schouten EM, Lindtstedt EL, Michaelsson E, de Boer RA, et al. Pharmacological myeloperoxidase (MPO) inhibition in an obese/hypertensive mouse model attenuates obesity and liver damage, but not cardiac remodeling. Sci Rep. 2019;9:18765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kopincova J, Puzserova A, Bernatova I. L-NAME in the cardiovascular system - nitric oxide synthase activator? Pharmacol Rep. 2012;64:511–20.

    Article  CAS  PubMed  Google Scholar 

  80. Schiattarella GG, Altamirano F, Tong D, French KM, Villalobos E, Kim SY, et al. Nitrosative stress drives heart failure with preserved ejection fraction. Nature. 2019;568:351–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wu H, Tang LX, Wang XM, Li LP, Chen XK, He YJ, et al. Porcupine inhibitor CGX1321 alleviates heart failure with preserved ejection fraction in mice by blocking WNT signaling. Acta Pharmacol Sin. 2023;44:1149–60.

    Article  CAS  PubMed  Google Scholar 

  82. Cao Y, Wang Y, Zhou Z, Pan C, Jiang L, Meng Y, et al. Liver-heart cross-talk mediated by coagulation factor XI protects against heart failure. Science. 2022;377:1399–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kanashiro-Takeuchi RM, Takeuchi LM, Dulce RA, Kazmierczak K, Balkan W, Cai R, et al. Efficacy of a growth hormone-releasing hormone agonist in a murine model of cardiometabolic heart failure with preserved ejection fraction. Am J Physiol Heart Circ Physiol. 2023;324:H739–H50.

    Article  CAS  PubMed  Google Scholar 

  84. Li Y, Kubo H, Yu D, Yang Y, Johnson JP, Eaton DM, et al. Combining three independent pathological stressors induces a heart failure with preserved ejection fraction phenotype. Am J Physiol Heart Circ Physiol. 2023;324:H443–H60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wang L, Halliday G, Huot JR, Satoh T, Baust JJ, Fisher A, et al. Treatment with treprostinil and metformin normalizes hyperglycemia and improves cardiac function in pulmonary hypertension associated with heart failure with preserved ejection fraction. Arterioscler Thromb Vasc Biol. 2020;40:1543–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lai YC, Tabima DM, Dube JJ, Hughan KS, Vanderpool RR, Goncharov DA, et al. SIRT3-AMP-activated protein kinase activation by nitrite and metformin improves hyperglycemia and normalizes pulmonary hypertension associated with heart failure with preserved ejection fraction. Circulation. 2016;133:717–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Satoh T, Wang L, Espinosa-Diez C, Wang B, Hahn SA, Noda K, et al. Metabolic syndrome mediates ROS-miR-193b-NFYA-dependent downregulation of soluble guanylate cyclase and contributes to exercise-induced pulmonary hypertension in heart failure with preserved ejection fraction. Circulation. 2021;144:615–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Schwarzl M, Hamdani N, Seiler S, Alogna A, Manninger M, Reilly S, et al. A porcine model of hypertensive cardiomyopathy: implications for heart failure with preserved ejection fraction. Am J Physiol Heart Circ Physiol. 2015;309:H1407–18.

    Article  CAS  PubMed  Google Scholar 

  89. Zhang N, Feng B, Ma X, Sun K, Xu G, Zhou Y. Dapagliflozin improves left ventricular remodeling and aorta sympathetic tone in a pig model of heart failure with preserved ejection fraction. Cardiovasc Diabetol. 2019;18:107.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Deng Y, Xie M, Li Q, Xu X, Ou W, Zhang Y, et al. Targeting mitochondria-inflammation circuit by beta-hydroxybutyrate mitigates HFpEF. Circ Res. 2021;128:232–45.

    Article  CAS  PubMed  Google Scholar 

  91. Liu X, Zhang Y, Deng Y, Yang L, Ou W, Xie M, et al. Mitochondrial protein hyperacetylation underpins heart failure with preserved ejection fraction in mice. J Mol Cell Cardiol. 2022;165:76–85.

    Article  CAS  PubMed  Google Scholar 

  92. Withaar C, Meems LMG, Markousis-Mavrogenis G, Boogerd CJ, Sillje HHW, Schouten EM, et al. The effects of liraglutide and dapagliflozin on cardiac function and structure in a multi-hit mouse model of heart failure with preserved ejection fraction. Cardiovasc Res. 2021;117:2108–24.

    Article  CAS  PubMed  Google Scholar 

  93. Gevaert AB, Shakeri H, Leloup AJ, Van Hove CE, De Meyer GRY, Vrints CJ, et al. Endothelial senescence contributes to heart failure with preserved ejection fraction in an aging mouse model. Circ Heart Fail. 2017;10:e003806.

    Article  CAS  PubMed  Google Scholar 

  94. Kelley RC, Betancourt L, Noriega AM, Brinson SC, Curbelo-Bermudez N, Hahn D, et al. Skeletal myopathy in a rat model of postmenopausal heart failure with preserved ejection fraction. J Appl Physiol (1985). 2022;132:106–25.

    Article  CAS  PubMed  Google Scholar 

  95. Delbridge LMD, Bell JR, Weeks KL, Raaijmakers AJA, Mellor KM. HFpEF etiology - Can focus on sex-specific mechanisms deliver insights for all? J Mol Cell Cardiol. 2022;173:71–2.

    Article  CAS  PubMed  Google Scholar 

  96. Tadic M, Cuspidi C, Plein S, Belyavskiy E, Heinzel F, Galderisi M. Sex and heart failure with preserved ejection fraction: from pathophysiology to clinical studies. J Clin Med. 2019;8:792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Reddy YNV, Carter RE, Obokata M, Redfield MM, Borlaug BA. A simple, evidence-based approach to help guide diagnosis of heart failure with preserved ejection fraction. Circulation. 2018;138:861–70.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Clemmer JS, Pruett WA. Modeling the physiological roles of the heart and kidney in heart failure with preserved ejection fraction during baroreflex activation therapy. Am J Physiol Heart Circ Physiol. 2022;323:H597–H607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Lopaschuk GD, Karwi QG, Tian R, Wende AR, Abel ED. Cardiac energy metabolism in heart failure. Circ Res. 2021;128:1487–513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Ferro F, Spelat R, Valente C, Contessotto P. Understanding how heart metabolic derangement shows differential stage specificity for heart failure with preserved and reduced ejection fraction. Biomolecules. 2022;12:969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Capone F, Sotomayor-Flores C, Bode D, Wang R, Rodolico D, Strocchi S, et al. Cardiac metabolism in HFpEF: from fuel to signalling. Cardiovasc Res. 2023;118:3556–75.

    Article  PubMed  Google Scholar 

  102. Li J, Kemp BA, Howell NL, Massey J, Minczuk K, Huang Q, et al. Metabolic changes in spontaneously hypertensive rat hearts precede cardiac dysfunction and left ventricular hypertrophy. J Am Heart Assoc. 2019;8:e010926.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Reutter BW, Huesman RH, Brennan KM, Boutchko R, Hanrahan SM, Gullberg GT. Longitudinal evaluation of fatty acid metabolism in normal and spontaneously hypertensive rat hearts with dynamic MicroSPECT imaging. Int J Mol Imaging. 2011;2011:893129.

    Article  PubMed  Google Scholar 

  104. Vincent G, Khairallah M, Bouchard B, Des, Rosiers C. Metabolic phenotyping of the diseased rat heart using 13C-substrates and ex vivo perfusion in the working mode. Mol Cell Biochem. 2003;242:89–99.

    Article  CAS  PubMed  Google Scholar 

  105. Charles CJ, Lee P, Li RR, Yeung T, Ibraham Mazlan SM, Tay ZW, et al. A porcine model of heart failure with preserved ejection fraction: magnetic resonance imaging and metabolic energetics. ESC Heart Fail. 2020;7:92–102.

    PubMed  Google Scholar 

  106. Polak A, Harasim-Symbor E, Malinowska B, Kasacka I, Lewandowska A, Chabowski A. The endocannabinoid system affects myocardial glucose metabolism in the DOCA-salt model of hypertension. Cell Physiol Biochem. 2018;46:727–39.

    Article  CAS  PubMed  Google Scholar 

  107. Fillmore N, Levasseur JL, Fukushima A, Wagg CS, Wang W, Dyck JRB, et al. Uncoupling of glycolysis from glucose oxidation accompanies the development of heart failure with preserved ejection fraction. Mol Med. 2018;24:3.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Zhang W, Zhang H, Yao W, Li L, Niu P, Huo Y, et al. Morphometric, hemodynamic, and multi-omics analyses in heart failure rats with preserved ejection fraction. Int J Mol Sci. 2020;21:3362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Xu H, Gao K, Liu C, Li T, Ding Y, Ma J. Pathological mechanism of heart failure with preserved ejection fraction in rats based on iTRAQ technology. PeerJ. 2023;11:e15280.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Choi YS, de Mattos AB, Shao D, Li T, Nabben M, Kim M, et al. Preservation of myocardial fatty acid oxidation prevents diastolic dysfunction in mice subjected to angiotensin II infusion. J Mol Cell Cardiol. 2016;100:64–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Ritterhoff J, Young S, Villet O, Shao D, Neto FC, Bettcher LF, et al. Metabolic remodeling promotes cardiac hypertrophy by directing glucose to aspartate biosynthesis. Circ Res. 2020;126:182–96.

    Article  CAS  PubMed  Google Scholar 

  112. Potnuri AG, Purushothaman S, Saheera S, Nair RR. Mito-targeted antioxidant prevents cardiovascular remodelling in spontaneously hypertensive rat by modulation of energy metabolism. Clin Exp Pharmacol Physiol. 2022;49:35–45.

    Article  CAS  PubMed  Google Scholar 

  113. Omori Y, Ohtani T, Sakata Y, Mano T, Takeda Y, Tamaki S, et al. L-Carnitine prevents the development of ventricular fibrosis and heart failure with preserved ejection fraction in hypertensive heart disease. J Hypertens. 2012;30:1834–44.

    Article  CAS  PubMed  Google Scholar 

  114. Liska F, Landa V, Zidek V, Mlejnek P, Silhavy J, Simakova M, et al. Downregulation of Plzf gene ameliorates metabolic and cardiac traits in the spontaneously hypertensive rat. Hypertension. 2017;69:1084–91.

    Article  CAS  PubMed  Google Scholar 

  115. Li Q, Li C, Elnwasany A, Sharma G, An YA, Zhang G, et al. PKM1 exerts critical roles in cardiac remodeling under pressure overload in the heart. Circulation. 2021;144:712–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. De Jong KA, Lopaschuk GD. Complex energy metabolic changes in heart failure with preserved ejection fraction and heart failure with reduced ejection fraction. Can J Cardiol. 2017;33:860–71.

    Article  PubMed  Google Scholar 

  117. Cortassa S, Caceres V, Tocchetti CG, Bernier M, de Cabo R, Paolocci N, et al. Metabolic remodelling of glucose, fatty acid and redox pathways in the heart of type 2 diabetic mice. J Physiol. 2020;598:1393–415.

    Article  CAS  PubMed  Google Scholar 

  118. Wang P, Lloyd SG, Zeng H, Bonen A, Chatham JC. Impact of altered substrate utilization on cardiac function in isolated hearts from Zucker diabetic fatty rats. Am J Physiol Heart Circ Physiol. 2005;288:H2102–10.

    Article  CAS  PubMed  Google Scholar 

  119. Buchanan J, Mazumder PK, Hu P, Chakrabarti G, Roberts MW, Yun UJ, et al. Reduced cardiac efficiency and altered substrate metabolism precedes the onset of hyperglycemia and contractile dysfunction in two mouse models of insulin resistance and obesity. Endocrinology. 2005;146:5341–9.

    Article  CAS  PubMed  Google Scholar 

  120. Mori J, Patel VB, Abo Alrob O, Basu R, Altamimi T, Desaulniers J, et al. Angiotensin 1-7 ameliorates diabetic cardiomyopathy and diastolic dysfunction in db/db mice by reducing lipotoxicity and inflammation. Circ Heart Fail. 2014;7:327–39.

    Article  CAS  PubMed  Google Scholar 

  121. Ko KY, Wu YW, Liu CW, Cheng MF, Yen RF, Yang WS. Longitudinal evaluation of myocardial glucose metabolism and contractile function in obese type 2 diabetic db/db mice using small-animal dynamic 18F-FDG PET and echocardiography. Oncotarget. 2017;8:87795–808.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Chatham JC, Seymour AM. Cardiac carbohydrate metabolism in Zucker diabetic fatty rats. Cardiovasc Res. 2002;55:104–12.

    Article  CAS  PubMed  Google Scholar 

  123. Mansor LS, Gonzalez ER, Cole MA, Tyler DJ, Beeson JH, Clarke K, et al. Cardiac metabolism in a new rat model of type 2 diabetes using high-fat diet with low dose streptozotocin. Cardiovasc Diabetol. 2013;12:136.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Gopal K, Almutairi M, Al Batran R, Eaton F, Gandhi M, Ussher JR. Cardiac-specific deletion of pyruvate dehydrogenase impairs glucose oxidation rates and induces diastolic dysfunction. Front Cardiovasc Med. 2018;5:17.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Gopal K, Al Batran R, Altamimi TR, Greenwell AA, Saed CT, Tabatabaei Dakhili SA, et al. FoxO1 inhibition alleviates type 2 diabetes-related diastolic dysfunction by increasing myocardial pyruvate dehydrogenase activity. Cell Rep. 2021;35:108935.

    Article  CAS  PubMed  Google Scholar 

  126. Le Page LM, Rider OJ, Lewis AJ, Ball V, Clarke K, Johansson E, et al. Increasing pyruvate dehydrogenase flux as a treatment for diabetic cardiomyopathy: a combined 13C hyperpolarized magnetic resonance and echocardiography study. Diabetes. 2015;64:2735–43.

    Article  PubMed  Google Scholar 

  127. Miranda-Silva D, Wust RCI, Conceicao G, Goncalves-Rodrigues P, Goncalves N, Goncalves A, et al. Disturbed cardiac mitochondrial and cytosolic calcium handling in a metabolic risk-related rat model of heart failure with preserved ejection fraction. Acta Physiol (Oxf). 2020;228:e13378.

    Article  CAS  PubMed  Google Scholar 

  128. Conceicao G, Matos J, Miranda-Silva D, Goncalves N, Sousa-Mendes C, Goncalves A, et al. Fat quality matters: distinct proteomic signatures between lean and obese cardiac visceral adipose tissue underlie its differential myocardial impact. Cell Physiol Biochem. 2020;54:384–400.

    Article  CAS  PubMed  Google Scholar 

  129. Christopher BA, Huang HM, Berthiaume JM, McElfresh TA, Chen X, Croniger CM, et al. Myocardial insulin resistance induced by high fat feeding in heart failure is associated with preserved contractile function. Am J Physiol Heart Circ Physiol. 2010;299:H1917–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Cheng Y, Li W, McElfresh TA, Chen X, Berthiaume JM, Castel L, et al. Changes in myofilament proteins, but not Ca2+regulation, are associated with a high-fat diet-induced improvement in contractile function in heart failure. Am J Physiol Heart Circ Physiol. 2011;301:H1438–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Koser F, Hobbach AJ, Abdellatif M, Herbst V, Turk C, Reinecke H, et al. Acetylation and phosphorylation changes to cardiac proteins in experimental HFpEF due to metabolic risk reveal targets for treatment. Life Sci. 2022;309:120998.

    Article  CAS  PubMed  Google Scholar 

  132. Wu CK, Lee JK, Hsu JC, Su MM, Wu YF, Lin TT, et al. Myocardial adipose deposition and the development of heart failure with preserved ejection fraction. Eur J Heart Fail. 2020;22:445–54.

    Article  CAS  PubMed  Google Scholar 

  133. Schiattarella GG, Altamirano F, Kim SY, Tong D, Ferdous A, Piristine H, et al. Xbp1s-FoxO1 axis governs lipid accumulation and contractile performance in heart failure with preserved ejection fraction. Nat Commun. 2021;12:1684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Leggat J, Bidault G, Vidal-Puig A. Lipotoxicity: a driver of heart failure with preserved ejection fraction? Clin Sci (Lond). 2021;135:2265–83.

    Article  CAS  PubMed  Google Scholar 

  135. Abdurrachim D, Ciapaite J, Wessels B, Nabben M, Luiken JJ, Nicolay K, et al. Cardiac diastolic dysfunction in high-fat diet fed mice is associated with lipotoxicity without impairment of cardiac energetics in vivo. Biochim Biophys Acta. 2014;1842:1525–37.

    Article  PubMed  Google Scholar 

  136. Chinas Merlin A, Gonzalez K, Mockler S, Perez Y, Jia UA, Chicco AJ, et al. Switching to a standard chow diet at weaning improves the effects of maternal and postnatal high-fat and high-sucrose diet on cardiometabolic health in adult male mouse offspring. Metabolites. 2022;12:563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Da Dalt L, Castiglioni L, Baragetti A, Audano M, Svecla M, Bonacina F, et al. PCSK9 deficiency rewires heart metabolism and drives heart failure with preserved ejection fraction. Eur Heart J. 2021;42:3078–90.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Koonen DP, Febbraio M, Bonnet S, Nagendran J, Young ME, Michelakis ED, et al. CD36 expression contributes to age-induced cardiomyopathy in mice. Circulation. 2007;116:2139–47.

    Article  CAS  PubMed  Google Scholar 

  139. Shao D, Kolwicz SC Jr., Wang P, Roe ND, Villet O, Nishi K, et al. Increasing fatty acid oxidation prevents high-fat diet-induced cardiomyopathy through regulating Parkin-mediated mitophagy. Circulation. 2020;142:983–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Choi RH, Tatum SM, Symons JD, Summers SA, Holland WL. Ceramides and other sphingolipids as drivers of cardiovascular disease. Nat Rev Cardiol. 2021;18:701–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Demarco VG, Ford DA, Henriksen EJ, Aroor AR, Johnson MS, Habibi J, et al. Obesity-related alterations in cardiac lipid profile and nondipping blood pressure pattern during transition to diastolic dysfunction in male db/db mice. Endocrinology. 2013;154:159–71.

    Article  CAS  PubMed  Google Scholar 

  142. Tran DH, Wang ZV. Glucose metabolism in cardiac hypertrophy and heart failure. J Am Heart Assoc. 2019;8:e012673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Chiao YA, Kolwicz SC, Basisty N, Gagnidze A, Zhang J, Gu H, et al. Rapamycin transiently induces mitochondrial remodeling to reprogram energy metabolism in old hearts. Aging (Albany NY). 2016;8:314–27.

    Article  CAS  PubMed  Google Scholar 

  144. Barton GP, Sepe JJ, McKiernan SH, Aiken JM, Diffee GM. Mitochondrial and metabolic gene expression in the aged rat heart. Front Physiol. 2016;7:352.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Ozaki N, Sato E, Kurokawa T, Ishibashi S. Early changes in the expression of GLUT4 protein in the heart of senescence-accelerated mouse. Mech Ageing Dev. 1996;88:149–58.

    Article  CAS  PubMed  Google Scholar 

  146. Kurokawa T, Ozaki N, Sato E, Ishibashi S. Rapid decrease of glycogen concentration in the hearts of senescence-accelerated mice during aging. Mech Ageing Dev. 1997;97:227–36.

    Article  CAS  PubMed  Google Scholar 

  147. Rodriguez MI, Carretero M, Escames G, Lopez LC, Maldonado MD, Tan DX, et al. Chronic melatonin treatment prevents age-dependent cardiac mitochondrial dysfunction in senescence-accelerated mice. Free Radic Res. 2007;41:15–24.

    Article  CAS  PubMed  Google Scholar 

  148. Sithara T, Drosatos K. Metabolic complications in cardiac aging. Front Physiol. 2021;12:669497.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Selvaraj S, Kelly DP, Margulies KB. Implications of altered ketone metabolism and therapeutic ketosis in heart failure. Circulation. 2020;141:1800–12.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Hahn VS, Petucci C, Kim MS, Bedi KC Jr., Wang H, Mishra S, et al. Myocardial metabolomics of human heart failure with preserved ejection fraction. Circulation. 2023;147:1147–61.

    Article  CAS  PubMed  Google Scholar 

  151. Ho KL, Zhang L, Wagg C, Al Batran R, Gopal K, Levasseur J, et al. Increased ketone body oxidation provides additional energy for the failing heart without improving cardiac efficiency. Cardiovasc Res. 2019;115:1606–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Abdurrachim D, Teo XQ, Woo CC, Chan WX, Lalic J, Lam CSP, et al. Empagliflozin reduces myocardial ketone utilization while preserving glucose utilization in diabetic hypertensive heart disease: a hyperpolarized 13C magnetic resonance spectroscopy study. Diabetes Obes Metab. 2019;21:357–65.

    Article  CAS  PubMed  Google Scholar 

  153. Aubert G, Martin OJ, Horton JL, Lai L, Vega RB, Leone TC, et al. The failing heart relies on ketone bodies as a fuel. Circulation. 2016;133:698–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Schugar RC, Moll AR, Andre d’Avignon D, Weinheimer CJ, Kovacs A, Crawford PA. Cardiomyocyte-specific deficiency of ketone body metabolism promotes accelerated pathological remodeling. Mol Metab. 2014;3:754–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Uchihashi M, Hoshino A, Okawa Y, Ariyoshi M, Kaimoto S, Tateishi S, et al. Cardiac-specific Bdh1 overexpression ameliorates oxidative stress and cardiac remodeling in pressure overload-induced heart failure. Circ Heart Fail. 2017;10:e004417.

    Article  CAS  PubMed  Google Scholar 

  156. Cluntun AA, Badolia R, Lettlova S, Parnell KM, Shankar TS, Diakos NA, et al. The pyruvate-lactate axis modulates cardiac hypertrophy and heart failure. Cell Metab. 2021;33:629–48.e10.

    Article  CAS  PubMed  Google Scholar 

  157. Fernandez-Caggiano M, Kamynina A, Francois AA, Prysyazhna O, Eykyn TR, Krasemann S, et al. Mitochondrial pyruvate carrier abundance mediates pathological cardiac hypertrophy. Nat Metab. 2020;2:1223–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Thapa D, Bugga P, Mushala BAS, Manning JR, Stoner MW, McMahon B, et al. GCN5L1 impairs diastolic function in mice exposed to a high fat diet by restricting cardiac pyruvate oxidation. Physiol Rep. 2022;10:e15415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Xiong S, Liu JG, Dong GJ, Ma L, Tang R. Effects of Linggui Qihua Decoction on cardiac function and glucose and lipid metabolism in rats with heart failure with preserved ejection fraction. Tianjin J Traditional Chin Med. 2021;38:909–91.

    Google Scholar 

  160. Lopatin YM, Rosano GM, Fragasso G, Lopaschuk GD, Seferovic PM, Gowdak LH, et al. Rationale and benefits of trimetazidine by acting on cardiac metabolism in heart failure. Int J Cardiol. 2016;203:909–15.

    Article  PubMed  Google Scholar 

  161. van de Bovenkamp AA, Bakermans AJ, Allaart CP, Nederveen AJ, Kok WEM, van Rossum AC, et al. TrimetaziDine as a Performance-enhancING drug in heart failure with preserved ejection fraction (DoPING-HFpEF): rationale and design of a placebo-controlled cross-over intervention study. Neth Heart J. 2020;28:312–9.

    Article  PubMed  PubMed Central  Google Scholar 

  162. Wang J, Lu Y, Min X, Yuan T, Wei J, Cai Z. The association between metformin treatment and outcomes in type 2 diabetes mellitus patients with heart failure with preserved ejection fraction: a retrospective study. Front Cardiovasc Med. 2021;8:648212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Takada S, Masaki Y, Kinugawa S, Matsumoto J, Furihata T, Mizushima W, et al. Dipeptidyl peptidase-4 inhibitor improved exercise capacity and mitochondrial biogenesis in mice with heart failure via activation of glucagon-like peptide-1 receptor signalling. Cardiovasc Res. 2016;111:338–47.

    Article  CAS  PubMed  Google Scholar 

  164. Kim YG, Yoon D, Park S, Han SJ, Kim DJ, Lee KW, et al. Dipeptidyl peptidase-4 inhibitors and risk of heart failure in patients with type 2 diabetes mellitus: a population-based Cohort study. Circ Heart Fail. 2017;10:e003957.

    Article  CAS  PubMed  Google Scholar 

  165. Enzan N, Matsushima S, Kaku H, Tohyama T, Nagata T, Ide T, et al. Beneficial effects of dipeptidyl peptidase-4 inhibitors on heart failure with preserved ejection fraction and diabetes. JACC Asia. 2023;3:93–104.

    Article  PubMed  PubMed Central  Google Scholar 

  166. Gaborit B, Ancel P, Abdullah AE, Maurice F, Abdesselam I, Calen A, et al. Effect of empagliflozin on ectopic fat stores and myocardial energetics in type 2 diabetes: the EMPACEF study. Cardiovasc Diabetol. 2021;20:57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Verma S, Rawat S, Ho KL, Wagg CS, Zhang L, Teoh H, et al. Empagliflozin increases cardiac energy production in diabetes: novel translational insights into the heart failure benefits of SGLT2 inhibitors. JACC Basic Transl Sci. 2018;3:575–87.

    Article  PubMed  PubMed Central  Google Scholar 

  168. Bode D, Semmler L, Wakula P, Hegemann N, Primessnig U, Beindorff N, et al. Dual SGLT-1 and SGLT-2 inhibition improves left atrial dysfunction in HFpEF. Cardiovasc Diabetol. 2021;20:7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Lee HC, Shiou YL, Jhuo SJ, Chang CY, Liu PL, Jhuang WJ, et al. The sodium-glucose co-transporter 2 inhibitor empagliflozin attenuates cardiac fibrosis and improves ventricular hemodynamics in hypertensive heart failure rats. Cardiovasc Diabetol. 2019;18:45.

    Article  PubMed  PubMed Central  Google Scholar 

  170. Hsieh CC, Li CY, Hsu CH, Chen HL, Chen YH, Liu YP, et al. Mitochondrial protection by simvastatin against angiotensin II-mediated heart failure. Br J Pharmacol. 2019;176:3791–804.

    Article  CAS  Google Scholar 

  171. Tsujimoto T, Kajio H. Favorable effects of statins in the treatment of heart failure with preserved ejection fraction in patients without ischemic heart disease. Int J Cardiol. 2018;255:111–7.

    Article  PubMed  Google Scholar 

  172. Huang Y, Zhang K, Wang X, Guo K, Li X, Chen F, et al. Multi-omics approach for identification of molecular alterations of QiShenYiQi dripping pills in heart failure with preserved ejection fraction. J Ethnopharmacol. 2023;315:116673.

    Article  CAS  PubMed  Google Scholar 

  173. Dong Z, Zhao P, Xu M, Zhang C, Guo W, Chen H, et al. Astragaloside IV alleviates heart failure via activating PPARalpha to switch glycolysis to fatty acid beta-oxidation. Sci Rep. 2017;7:2691.

    Article  PubMed  PubMed Central  Google Scholar 

  174. Tong D, Schiattarella GG, Jiang N, Altamirano F, Szweda PA, Elnwasany A, et al. NAD(+) repletion reverses heart failure with preserved ejection fraction. Circ Res. 2021;128:1629–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. LaPenna KB, Li Z, Doiron JE, Sharp TE 3rd, Xia H, Moles K, et al. Combination sodium nitrite and hydralazine therapy attenuates heart failure with preserved ejection fraction severity in a “2-Hit” Murine Model. J Am Heart Assoc. 2023;12:e028480.

    Article  PubMed  PubMed Central  Google Scholar 

  176. Panagia M, He H, Baka T, Pimentel DR, Croteau D, Bachschmid MM, et al. Increasing mitochondrial ATP synthesis with butyrate normalizes ADP and contractile function in metabolic heart disease. NMR Biomed. 2020;33:e4258.

    Article  PubMed  PubMed Central  Google Scholar 

  177. Carley AN, Maurya SK, Fasano M, Wang Y, Selzman CH, Drakos SG, et al. Short-chain fatty acids outpace ketone oxidation in the failing heart. Circulation. 2021;143:1797–808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Ekanayake P, Hupfeld C, Mudaliar S. Sodium-glucose cotransporter type 2 (SGLT-2) inhibitors and ketogenesis: the good and the bad. Curr Diab Rep. 2020;20:74.

    Article  CAS  PubMed  Google Scholar 

  179. Liao S, Tang Y, Yue X, Gao R, Yao W, Zhou Y, et al. Beta-hydroxybutyrate mitigated heart failure with preserved ejection fraction by increasing Treg cells via Nox2/GSK-3beta. J Inflamm Res. 2021;14:4697–706.

    Article  PubMed  PubMed Central  Google Scholar 

  180. Balietti M, Fattoretti P, Giorgetti B, Casoli T, Di Stefano G, Solazzi M, et al. A ketogenic diet increases succinic dehydrogenase activity in aging cardiomyocytes. Ann N Y Acad Sci. 2009;1171:377–84.

    Article  CAS  PubMed  Google Scholar 

  181. Guo Y, Liu X, Li T, Zhao J, Yang Y, Yao Y, et al. Alternate-day ketogenic diet feeding protects against heart failure through preservation of ketogenesis in the liver. Oxid Med Cell Longev. 2022;2022:4253651.

  182. Hundertmark MJ, Adler A, Antoniades C, Coleman R, Griffin JL, Holman RR, et al. Assessment of cardiac energy metabolism, function, and physiology in patients with heart failure taking empagliflozin: the randomized, controlled EMPA-VISION trial. Circulation. 2023;147:1654–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (No. 82160278, 81500214, 82370444 and 82070464), the Guangxi Natural Science Foundation (No. 2023GXNSFAA026209) and the Doctoral Foundation of Guangxi University of Science and Technology (No. 20Z23). The elements in Figs. 13 were provided by Freepik (https://www.freepik.com/) and used for a fee. The elements in Fig. 2 were provided by Servier Medical ART (https://smart.servier.com/).

Author information

Authors and Affiliations

Authors

Contributions

XJ, SX, and XW conceived this manuscript. SG and XW wrote and edited the manuscript. XL and TL reviewed and made significant revisions to the manuscript. LC organized the table contents. YF, YW, and YY edited the manuscript. PJL provided clinical insights and fine-tuned the English language presentation of the manuscript.

Corresponding authors

Correspondence to Xiao-qian Wu, Suo-wen Xu or Xu-dong Jiang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, S., Liu, Xp., Li, Tt. et al. Animal models of heart failure with preserved ejection fraction (HFpEF): from metabolic pathobiology to drug discovery. Acta Pharmacol Sin 45, 23–35 (2024). https://doi.org/10.1038/s41401-023-01152-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41401-023-01152-0

  • Springer Nature Singapore Pte Ltd.

Keywords

Navigation