Skip to main content

Advertisement

Log in

Programmed cell death in cardiac myocytes: strategies to maximize post-ischemic salvage

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

The most common cause of systolic dysfunction in the United States is prior ischemic injury. As the basic functional unit of the myocardium, the cardiac myocyte is the ultimate target of both the pathogenesis and possible therapies in this paradigm. Maintaining adequate numbers of these terminally differentiated units in the myocardium has been the focus of all therapies in ischemic syndromes, including reperfusion strategies. Programmed cell death, in the forms of apoptosis, necrosis and possibly, autophagic cell death are the final arbiters of myocyte numbers following myocardial infarction. This review will focus on the evidence for cell death in the development of heart failure following myocardial infarction, a brief review of the relevant pathways and the targets for development of future therapies

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Rosamond W, Flegal K, Friday G, Furie K, Go A, Greenlund K, Haase N, Ho M, Howard V, Kissela B, Kittner S, Lloyd-Jones D, McDermott M, Meigs J, Moy C, Nichol G, O’Donnell CJ, Roger V, Rumsfeld J, Sorlie P, Steinberger J, Thom T, Wasserthiel-Smoller S, Hong Y, for the American Heart Association Statistics Committee, Stroke Statistics (2007) Heart disease and stroke statistics–2007 update: a report from the American heart association statistics committee and stroke statistics subcommittee. Circulation 115(5):e69–e171

    PubMed  Google Scholar 

  2. Jessup M, Brozena S (2003) Heart failure. N Engl J Med 348:2007

    PubMed  Google Scholar 

  3. Long X, Boluyt MO, Hipolito MdL, Lundberg MS, Zheng J-S, O’Neill L, Cirielli C, Lakatta EG, Crow MT (1997) p53 and the hypoxia-induced apoptosis of cultured neonatal rat cardiac myocytes. J Clin Invest 99(11):2635–2643

    PubMed  CAS  Google Scholar 

  4. Potts MB, Vaughn AE, McDonough H, Patterson C, Deshmukh M (2005) Reduced Apaf-1 levels in cardiomyocytes engage strict regulation of apoptosis by endogenous XIAP. J Cell Biol 171(6):925–930

    PubMed  CAS  Google Scholar 

  5. Yuan J, Lipinski M, Degterev A (2003) Diversity in the mechanisms of neuronal cell death. Neuron 40(2):401–413

    PubMed  CAS  Google Scholar 

  6. Crow MT, Mani K, Nam YJ, Kitsis RN (2004) The mitochondrial death pathway and cardiac myocyte apoptosis. Circ Res 95(10):957–970

    PubMed  CAS  Google Scholar 

  7. Peters NS, Wit AL (1998) Myocardial architecture and ventricular arrhythmogenesis. Circulation 97(17):1746–1754

    PubMed  CAS  Google Scholar 

  8. Anversa P, Cheng W, Liu Y, Leri A, Redaelli G, Kajstura J (1998) Apoptosis and myocardial infarction. Basic Res Cardiol 93(Suppl 3):8–12

    PubMed  Google Scholar 

  9. Danial NN, Korsmeyer SJ (2004) Cell death: critical control points. Cell 116(2):205–219

    PubMed  CAS  Google Scholar 

  10. Kerr JF (1971) Shrinkage necrosis: a distinct mode of cellular death. J Pathol 105(1):13–20

    PubMed  CAS  Google Scholar 

  11. Savill J, Fadok V (2000) Corpse clearance defines the meaning of cell death. Nature 407(6805):784–788

    PubMed  CAS  Google Scholar 

  12. Fisher SA, Langille BL, Srivastava D (2000) Apoptosis during cardiovascular development. Circ Res 87(10):856–864

    PubMed  CAS  Google Scholar 

  13. Gottlieb RA, Burleson KO, Kloner RA, Babior BM, Engler RL (1994) Reperfusion injury induces apoptosis in rabbit cardiomyocytes. J Clin Invest 94(4):1621–1628

    PubMed  CAS  Google Scholar 

  14. Olivetti G, Quaini F, Sala R, Lagrasta C, Corradi D, Bonacina E, Gambert SR, Cigola E, Anversa P (1996) Acute myocardial infarction in humans is associated with activation of programmed myocyte cell death in the surviving portion of the heart. J Mol Cell Cardiol 28(9):2005–2016

    PubMed  CAS  Google Scholar 

  15. Kajstura J, Cheng W, Reiss K, Clark WA, Sonnenblick EH, Krajewski S, Reed JC, Olivetti G, Anversa P (1996) Apoptotic and necrotic myocyte cell deaths are independent contributing variables of infarct size in rats. Lab Invest 74(1):86–107

    PubMed  CAS  Google Scholar 

  16. Fliss H, Gattinger D (1996) Apoptosis in ischemic and reperfused rat myocardium. Circ Res 79(5):949–956

    PubMed  CAS  Google Scholar 

  17. Bialik S, Geenen DL, Sasson IE, Cheng R, Horner JW, Evans SM, Lord EM, Koch CJ, Kitsis RN (1997) Myocyte apoptosis during acute myocardial infarction in the mouse localizes to hypoxic regions but occurs independently of p53. J Clin Invest 100(6):1363–1372

    PubMed  CAS  Google Scholar 

  18. Saraste A, Pulkki K, Kallajoki M, Henriksen K, Parvinen M, Voipio-Pulkki LM (1997) Apoptosis in human acute myocardial infarction. Circulation 95(2):320–323

    PubMed  CAS  Google Scholar 

  19. Narula J, Haider N, Virmani R, DiSalvo TG, Kolodgie FD, Hajjar RJ, Schmidt U, Semigran MJ, Dec GW, Khaw BA (1996) Apoptosis in myocytes in end-stage heart failure. N Engl J Med 335(16):1182–1189

    PubMed  CAS  Google Scholar 

  20. Condorelli G, Morisco C, Stassi G, Notte A, Farina F, Sgaramella G, de Rienzo A, Roncarati R, Trimarco B, Lembo G (1999) Increased cardiomyocyte apoptosis and changes in proapoptotic and antiapoptotic genes bax and bcl-2 during left ventricular adaptations to chronic pressure overload in the rat. Circulation 99(23):3071–3078

    PubMed  CAS  Google Scholar 

  21. Olivetti G, Abbi R, Quaini F, Kajstura J, Cheng W, Nitahara JA, Quaini E, Di Loreto C, Beltrami CA, Krajewski S, Reed JC, Anversa P (1997) Apoptosis in the failing human heart. N Engl J Med 336(16):1131–1141

    PubMed  CAS  Google Scholar 

  22. Saraste A, Pulkki K, Kallajoki M, Heikkila P, Laine P, Mattila S, Nieminen MS, Parvinen M, Voipio-Pulkki LM (1999) Cardiomyocyte apoptosis and progression of heart failure to transplantation. Eur J Clin Invest 29(5):380–386

    PubMed  CAS  Google Scholar 

  23. Guerra S, Leri A, Wang X, Finato N, Di Loreto C, Beltrami CA, Kajstura J, Anversa P (1999) Myocyte death in the failing human heart is gender dependent. Circ Res 85(9):856–866

    PubMed  CAS  Google Scholar 

  24. Palojoki E, Saraste A, Eriksson A, Pulkki K, Kallajoki M, Voipio-Pulkki LM, Tikkanen I (2001) Cardiomyocyte apoptosis and ventricular remodeling after myocardial infarction in rats. Am J Physiol Heart Circ Physiol 280(6):H2726–H2731

    PubMed  CAS  Google Scholar 

  25. Mani K, Kitsis RN (2003) Myocyte apoptosis: programming ventricular remodeling. J Am Coll Cardiol 41(5):761–764

    PubMed  Google Scholar 

  26. Wencker D, Chandra M, Nguyen K, Miao W, Garantziotis S, Factor SM, Shirani J, Armstrong RC, Kitsis RN (2003) A mechanistic role for cardiac myocyte apoptosis in heart failure. J Clin Invest 111(10):1497–1504

    PubMed  CAS  Google Scholar 

  27. Sutton MGSJ, Sharpe N (2000) Left ventricular remodeling after myocardial infarction : pathophysiology and therapy. Circulation 101(25):2981–2988

    PubMed  CAS  Google Scholar 

  28. Mani K, Crow MT, Kitsis RN (2005) In: Walsh RA (ed) Molecular mechanisms of cardiac myocyte death, in molecular mechanisms of cardiac hypertrophy and failure. Taylor & Francis, pp 33–58

  29. Thornberry NA, Lazebnik Y (1998) Caspases: enemies within. Science 281(5381):1312–1316

    PubMed  CAS  Google Scholar 

  30. Jeremias I, Kupatt C, Martin-Villalba A, Habazettl H, Schenkel J, Boekstegers P, Debatin KM (2000) Involvement of CD95/Apo1/Fas in cell death after myocardial ischemia. Circulation 102(8):915–920

    PubMed  CAS  Google Scholar 

  31. Lee P, Sata M, Lefer DJ, Factor SM, Walsh K, Kitsis RN (2003) Fas pathway is a critical mediator of cardiac myocyte death and MI during ischemia-reperfusion in vivo. Am J Physiol Heart Circ Physiol 284(2):H456–H463

    PubMed  CAS  Google Scholar 

  32. Bialik S, Cryns VL, Drincic A, Miyata S, Wollowick AL, Srinivasan A, Kitsis RN (1999) The mitochondrial apoptotic pathway is activated by serum and glucose deprivation in cardiac myocytes. Circ Res 85(5):403–414

    PubMed  CAS  Google Scholar 

  33. Neuss M, Monticone R, Lundberg MS, Chesley AT, Fleck E, Crow MT (2001) The apoptotic regulatory protein ARC (apoptosis repressor with caspase recruitment domain) prevents oxidant stress-mediated cell death by preserving mitochondrial function. J Biol Chem 276(36):33915–33922

    PubMed  CAS  Google Scholar 

  34. Yussman MG, Toyokawa T, Odley A, Lynch RA, Wu G, Colbert MC, Aronow BJ, Lorenz JN, Dorn GW 2nd (2002) Mitochondrial death protein Nix is induced in cardiac hypertrophy and triggers apoptotic cardiomyopathy. Nat Med 8(7):725–730

    PubMed  CAS  Google Scholar 

  35. Ashkenazi A, Dixit VM (1998) Death receptors: signaling and modulation. Science 281(5381):1305–1308

    PubMed  CAS  Google Scholar 

  36. Siegel RM, Frederiksen JK, Zacharias DA, Chan FK, Johnson M, Lynch D, Tsien RY, Lenardo MJ (2000) Fas preassociation required for apoptosis signaling and dominant inhibition by pathogenic mutations. Science 288(5475):2354–2357

    PubMed  CAS  Google Scholar 

  37. Boldin MP, Varfolomeev EE, Pancer Z, Mett IL, Camonis JH, Wallach D (1995) A novel protein that interacts with the death domain of Fas/APO1 contains a sequence motif related to the death domain. J Biol Chem 270(14):7795–7798

    PubMed  CAS  Google Scholar 

  38. Kischkel FC, Hellbardt S, Behrmann I, Germer M, Pawlita M, Krammer PH, Peter ME (1995) Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J 14(22):5579–5588

    PubMed  CAS  Google Scholar 

  39. Boldin MP, Goncharov TM, Goltsev YV, Wallach D (1996) Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1- and TNF receptor-induced cell death. Cell 85(6):803–815

    PubMed  CAS  Google Scholar 

  40. Muzio M, Chinnaiyan AM, Kischkel FC, O’Rourke K, Shevchenko A, Ni J, Scaffidi C, Bretz JD, Zhang M, Gentz R, Mann M, Krammer PH, Peter ME, Dixit VM (1996) FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death–inducing signaling complex. Cell 85(6):817–827

    PubMed  CAS  Google Scholar 

  41. Muzio M, Stockwell BR, Stennicke HR, Salvesen GS, Dixit VM (1998) An induced proximity model for caspase-8 activation. J Biol Chem 273(5):2926–2930

    PubMed  CAS  Google Scholar 

  42. Stennicke HR, Jurgensmeier JM, Shin H, Deveraux Q, Wolf BB, Yang X, Zhou Q, Ellerby HM, Ellerby LM, Bredesen D, Green DR, Reed JC, Froelich CJ, Salvesen GS (1998) Pro-caspase-3 is a major physiologic target of caspase-8. J Biol Chem 273(42):27084–27090

    PubMed  CAS  Google Scholar 

  43. Micheau O, Tschopp J (2003) Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 114(2):181–190

    PubMed  CAS  Google Scholar 

  44. Datta SR, Ranger AM, Lin MZ, Sturgill JF, Ma YC, Cowan CW, Dikkes P, Korsmeyer SJ, Greenberg ME (2002) Survival factor-mediated BAD phosphorylation raises the mitochondrial threshold for apoptosis. Dev Cell 3(5):631–643

    PubMed  CAS  Google Scholar 

  45. Bruick RK (2000) Expression of the gene encoding the proapoptotic Nip3 protein is induced by hypoxia. Proc Natl Acad Sci USA 97(16):9082–9087

    PubMed  CAS  Google Scholar 

  46. Kubasiak LA, Hernandez OM, Bishopric NH, Webster KA (2002) Hypoxia and acidosis activate cardiac myocyte death through the Bcl-2 family protein BNIP3. Proc Natl Acad Sci USA 11:11

    Google Scholar 

  47. Kang PM, Haunstetter A, Aoki H, Usheva A, Izumo S (2000) Morphological and molecular characterization of adult cardiomyocyte apoptosis during hypoxia and reoxygenation. Circ Res 87(2):118–125

    PubMed  CAS  Google Scholar 

  48. Akao M, O’Rourke B, Teshima Y, Seharaseyon J, Marban E (2003) Mechanistically distinct steps in the mitochondrial death pathway triggered by oxidative stress in cardiac myocytes. Circ Res 92(2):186–194

    PubMed  CAS  Google Scholar 

  49. Xiao RP (2001) Beta-adrenergic signaling in the heart: dual coupling of the beta2-adrenergic receptor to G(s) and G(i) proteins. Sci STKE 2001(104):RE15

    PubMed  CAS  Google Scholar 

  50. Wang K, Yin XM, Chao DT, Milliman CL, Korsmeyer SJ (1996) BID: a novel BH3 domain-only death agonist. Genes Dev 10(22):2859–2869

    PubMed  CAS  Google Scholar 

  51. Chen M, He H, Zhan S, Krajewski S, Reed JC, Gottlieb RA (2001) Bid is cleaved by calpain to an active fragment in vitro and during myocardial ischemia/reperfusion. J Biol Chem 276(33):30724–30728

    PubMed  CAS  Google Scholar 

  52. Nechushtan A, Smith CL, Hsu YT, Youle RJ (1999) Conformation of the Bax C-terminus regulates subcellular location and cell death. EMBO J 18(9):2330–2341

    PubMed  CAS  Google Scholar 

  53. Wei MC, Zong WX, Cheng EH, Lindsten T, Panoutsakopoulou V, Ross AJ, Roth KA, MacGregor GR, Thompson CB, Korsmeyer SJ (2001) Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292(5517):727–730

    PubMed  CAS  Google Scholar 

  54. Nechushtan A, Smith CL, Lamensdorf I, Yoon S-H, Youle RJ (2001) Bax and Bak coalesce into novel mitochondria-associated clusters during apoptosis. J Cell Biol 153(6):1265–1276

    PubMed  CAS  Google Scholar 

  55. Griffiths GJ, Dubrez L, Morgan CP, Jones NA, Whitehouse J, Corfe BM, Dive C, Hickman JA (1999) Cell damage-induced conformational changes of the pro-apoptotic protein Bak in vivo precede the onset of apoptosis. J Cell Biol 144(5):903–914

    PubMed  CAS  Google Scholar 

  56. Scorrano L, Ashiya M, Buttle K, Weiler S, Oakes SA, Mannella CA, Korsmeyer SJ (2002) A distinct pathway remodels mitochondrial cristae and mobilizes cytochrome c during apoptosis. Dev Cell 2(1):55–67

    PubMed  CAS  Google Scholar 

  57. Baines CP, Kaiser RA, Purcell NH, Blair NS, Osinska H, Hambleton MA, Brunskill EW, Sayen MR, Gottlieb RA, Dorn GW, Robbins J, Molkentin JD (2005) Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 434(7033):658–662

    PubMed  CAS  Google Scholar 

  58. Lassus P, Opitz-Araya X, Lazebnik Y (2002) Requirement for caspase-2 in stress-induced apoptosis before mitochondrial permeabilization. Science 297(5585):1352–1354

    PubMed  CAS  Google Scholar 

  59. Bernardi P, Azzone GF (1981) Cytochrome c as an electron shuttle between the outer and inner mitochondrial membranes. J Biol Chem 256(14):7187–7192

    PubMed  CAS  Google Scholar 

  60. Zou H, Henzel WJ, Liu X, Lutschg A, Wang X (1997) Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90(3):405–413

    PubMed  CAS  Google Scholar 

  61. Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91(4):479–489

    PubMed  CAS  Google Scholar 

  62. Srinivasula SM, Ahmad M, Fernandes-Alnemri T, Alnemri ES (1998) Autoactivation of procaspase-9 by Apaf-1-mediated oligomerization. Mol Cell 1(7):949–957

    PubMed  CAS  Google Scholar 

  63. Hu Y, Ding L, Spencer DM, Nunez G (1998) WD-40 repeat region regulates Apaf-1 self-association and procaspase-9 activation. J Biol Chem 273(50):33489–33494

    PubMed  CAS  Google Scholar 

  64. Saleh A, Srinivasula SM, Acharya S, Fishel R, Alnemri ES (1999) Cytochrome c and dATP-mediated oligomerization of Apaf-1 is a prerequisite for procaspase-9 activation. J Biol Chem 274(25):17941–17945

    PubMed  CAS  Google Scholar 

  65. Zou H, Li Y, Liu X, Wang X (1999) An APAF-1 cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J Biol Chem 274(17):11549–11556

    PubMed  CAS  Google Scholar 

  66. Qin H, Srinivasula SM, Wu G, Fernandes-Alnemri T, Alnemri ES, Shi Y (1999) Structural basis of procaspase-9 recruitment by the apoptotic protease-activating factor 1. Nature 399(6736):549–557

    PubMed  CAS  Google Scholar 

  67. Zhou P, Chou J, Olea RS, Yuan J, Wagner G (1999) Solution structure of Apaf-1 CARD and its interaction with caspase-9 CARD: a structural basis for specific adaptor/caspase interaction. Proc Natl Acad Sci USA 96(20):11265–11270

    PubMed  CAS  Google Scholar 

  68. Day CL, Dupont C, Lackmann M, Vaux DL, Hinds MG (1999) Solution structure and mutagenesis of the caspase recruitment domain (CARD) from Apaf-1. Cell Death Differ 6(11):1125–1132

    PubMed  CAS  Google Scholar 

  69. Jiang X, Wang X (2000) Cytochrome c promotes caspase-9 activation by inducing nucleotide binding to Apaf-1. J Biol Chem 275(40):31199–31203

    PubMed  CAS  Google Scholar 

  70. Acehan D, Jiang X, Morgan DG, Heuser JE, Wang X, Akey CW (2002) Three-dimensional structure of the apoptosome: implications for assembly, procaspase-9 binding, and activation. Mol Cell 9(2):423–432

    PubMed  CAS  Google Scholar 

  71. Bratton SB, Walker G, Srinivasula SM, Sun XM, Butterworth M, Alnemri ES, Cohen GM (2001) Recruitment, activation and retention of caspases-9 and -3 by Apaf-1 apoptosome and associated XIAP complexes. EMBO J 20(5):998–1009

    PubMed  CAS  Google Scholar 

  72. Slee EA, Harte MT, Kluck RM, Wolf BB, Casiano CA, Newmeyer DD, Wang HG, Reed JC, Nicholson DW, Alnemri ES, Green DR, Martin SJ (1999) Ordering the cytochrome c-initiated caspase cascade: hierarchical activation of caspases-2, -3, -6, -7, -8, and -10 in a caspase-9-dependent manner. J Cell Biol 144(2):281–292

    PubMed  CAS  Google Scholar 

  73. Pacher P, Hajnoczky G (2001) Propagation of the apoptotic signal by mitochondrial waves. EMBO J 20(15):4107–4121

    PubMed  CAS  Google Scholar 

  74. Scorrano L, Oakes SA, Opferman JT, Cheng EH, Sorcinelli MD, Pozzan T, Korsmeyer SJ (2003) BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis. Science 300(5616):135–139

    PubMed  CAS  Google Scholar 

  75. Chen M, Won DJ, Krajewski S, Gottlieb RA (2002) Calpain and mitochondria in ischemia/reperfusion injury. J Biol Chem 277(32):29181–29186

    PubMed  CAS  Google Scholar 

  76. Nakagawa T, Yuan J (2000) Cross-talk between two cysteine protease families. Activation of caspase-12 by calpain in apoptosis. J Cell Biol 150(4):887–894

    PubMed  CAS  Google Scholar 

  77. Nakagawa T, Zhu H, Morishima N, Li E, Xu J, Yankner BA, Yuan J (2000) Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 403(6765):98–103

    PubMed  CAS  Google Scholar 

  78. Morishima N, Nakanishi K, Takenouchi H, Shibata T, Yasuhiko Y (2002) An endoplasmic reticulum stress-specific caspase cascade in apoptosis. Cytochrome c-independent activation of caspase-9 by caspase-12. J Biol Chem 277(37):34287–34294

    PubMed  CAS  Google Scholar 

  79. Fischer U, Janicke RU, Schulze-Osthoff K (2003) Many cuts to ruin: a comprehensive update of caspase substrates. Cell Death Differ 10(1):76–100

    PubMed  CAS  Google Scholar 

  80. Ruetten H, Badorff C, Ihling C, Zeiher AM, Dimmeler S (2001) Inhibition of caspase-3 improves contractile recovery of stunned myocardium, independent of apoptosis-inhibitory effects. J Am Coll Cardiol 38(7):2063–2070

    PubMed  CAS  Google Scholar 

  81. Liu X, Li P, Widlak P, Zou H, Luo X, Garrard WT, Wang X (1998) The 40-kDa subunit of DNA fragmentation factor induces DNA fragmentation and chromatin condensation during apoptosis. Proc Natl Acad Sci USA 95(15):8461–8466

    PubMed  CAS  Google Scholar 

  82. Susin SA, Lorenzo HK, Zamzami N, Marzo I, Snow BE, Brothers GM, Mangion J, Jacotot E, Costantini P, Loeffler M, Larochette N, Goodlett DR, Aebersold R, Siderovski DP, Penninger JM, Kroemer G (1999) Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397(6718):441–446

    PubMed  CAS  Google Scholar 

  83. Joza N, Susin SA, Daugas E, Stanford WL, Cho SK, Li CY, Sasaki T, Elia AJ, Cheng HY, Ravagnan L, Ferri KF, Zamzami N, Wakeham A, Hakem R, Yoshida H, Kong YY, Mak TW, Zuniga-Pflucker JC, Kroemer G, Penninger JM (2001) Essential role of the mitochondrial apoptosis-inducing factor in programmed cell death. Nature 410(6828):549–554

    PubMed  CAS  Google Scholar 

  84. Lipton SA, Bossy-Wetzel E (2002) Dueling activities of AIF in cell death versus survival: DNA binding and redox activity. Cell 111(2):147–150

    PubMed  CAS  Google Scholar 

  85. Yu S-W, Wang H, Poitras MF, Coombs C, Bowers WJ, Federoff HJ, Poirier GG, Dawson TM, Dawson VL (2002) Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. Science 297(5579):259–263

    PubMed  CAS  Google Scholar 

  86. Pieper AA, Walles T, Wei G, Clements EE, Verma A, Snyder SH, Zweier JL (2000) Myocardial postischemic injury is reduced by polyADPripose polymerase-1 gene disruption. Mol Med 6(4):271–282

    PubMed  CAS  Google Scholar 

  87. Bahi N, Zhang J, Llovera M, Ballester M, Comella JX, Sanchis D (2006) Switch from caspase-dependent to caspase-independent death during heart development: essential role of endonuclease G in ischemia-induced DNA processing of differentiated cardiomyocytes. J Biol Chem 281(32):22943–22952

    PubMed  CAS  Google Scholar 

  88. Li LY, Luo X, Wang X (2001) Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 412(6842):95–99

    PubMed  CAS  Google Scholar 

  89. Peter ME (2004) The flip side of FLIP. Biochem J 382(Pt 2):e1–e3

    PubMed  CAS  Google Scholar 

  90. Sawada M, Sun W, Hayes P, Leskov K, Boothman DA, Matsuyama S (2003) Ku70 suppresses the apoptotic translocation of Bax to mitochondria. Nat Cell Biol 5(4):320–329

    PubMed  CAS  Google Scholar 

  91. Guo B, Zhai D, Cabezas E, Welsh K, Nouraini S, Satterthwait AC, Reed JC (2003) Humanin peptide suppresses apoptosis by interfering with Bax activation. Nature 423(6938):456–461

    PubMed  CAS  Google Scholar 

  92. Eckelman BP, Salvesen GS, Scott FL (2006) Human inhibitor of apoptosis proteins: why XIAP is the black sheep of the family. EMBO Rep 7(10):988–994

    PubMed  CAS  Google Scholar 

  93. Koseki T, Inohara N, Chen S, Nunez G (1998) ARC, an inhibitor of apoptosis expressed in skeletal muscle and heart that interacts selectively with caspases. Proc Natl Acad Sci USA 95(9):5156–5160

    PubMed  CAS  Google Scholar 

  94. Zhu WZ, Wang SQ, Chakir K, Yang D, Zhang T, Brown JH, Devic E, Kobilka BK, Cheng H, Xiao RP (2003) Linkage of beta1-adrenergic stimulation to apoptotic heart cell death through protein kinase A-independent activation of Ca2+/calmodulin kinase II. J Clin Invest 111(5):617–625

    PubMed  CAS  Google Scholar 

  95. Meylan E, Tschopp J (2005) The RIP kinases: crucial integrators of cellular stress. Trends Biochem Sci 30(3):151–159

    PubMed  CAS  Google Scholar 

  96. Hausenloy DJ, Tsang A, Yellon DM (2005) The reperfusion injury salvage kinase pathway: a common target for both ischemic preconditioning and postconditioning. Trends Cardiovasc Med 15(2):69–75

    PubMed  CAS  Google Scholar 

  97. Lu X (2005) p53: a heavily dictated dictator of life and death. Curr Opin Genet Dev 15(1):27–33

    PubMed  CAS  Google Scholar 

  98. Liu ZG, Hsu H, Goeddel DV, Karin M (1996) Dissection of TNF receptor 1 effector functions: JNK activation is not linked to apoptosis while NF-kappaB activation prevents cell death. Cell 87(3):565–576

    PubMed  CAS  Google Scholar 

  99. Shiokawa D, Kobayashi T, Tanuma S (2002) Involvement of DNase gamma in apoptosis associated with myogenic differentiation of C2C12 cells. J Biol Chem 277(34):31031–31037

    PubMed  CAS  Google Scholar 

  100. Du C, Fang M, Li Y, Li L, Wang X (2000) Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102(1):33–42

    PubMed  CAS  Google Scholar 

  101. Verhagen AM, Ekert PG, Pakusch M, Silke J, Connolly LM, Reid GE, Moritz RL, Simpson RJ, Vaux DL (2000) Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 102(1):43–53

    PubMed  CAS  Google Scholar 

  102. Suzuki Y, Imai Y, Nakayama H, Takahashi K, Takio K, Takahashi R (2001) A serine protease, HtrA2, is released from the mitochondria and interacts with XIAP, inducing cell death. Mol Cell 8(3):613–621

    PubMed  CAS  Google Scholar 

  103. Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y, Greenberg ME (1997) Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91(2):231–241

    PubMed  CAS  Google Scholar 

  104. Liston P, Fong WG, Korneluk RG (2003) The inhibitors of apoptosis: there is more to life than Bcl2. Oncogene 22(53):8568–8580

    PubMed  CAS  Google Scholar 

  105. Zhang H, Xu Q, Krajewski S, Krajewska M, Xie Z, Fuess S, Kitada S, Pawlowski K, Godzik A, Reed JC (2000) BAR: an apoptosis regulator at the intersection of caspases and Bcl-2 family proteins. Proc Natl Acad Sci USA 97(6):2597–2602

    PubMed  CAS  Google Scholar 

  106. Roth W, Kermer P, Krajewska M, Welsh K, Davis S, Krajewski S, Reed JC (2003) Bifunctional apoptosis inhibitor (BAR) protects neurons from diverse cell death pathways. Cell Death Differ 10(10):1178–1187

    PubMed  CAS  Google Scholar 

  107. Yaglom JA, Ekhterae D, Gabai VL, Sherman MY (2003) Regulation of necrosis of H9c2 myogenic cells upon transient energy deprivation. Rapid deenergization of mitochondria precedes necrosis and is controlled by reactive oxygen species, stress kinase JNK, HSP72 and ARC. J Biol Chem 278(50):50483–50496

    PubMed  CAS  Google Scholar 

  108. Ekhterae D, Platoshyn O, Zhang S, Remillard CV, Yuan JX (2003) Apoptosis repressor with caspase domain inhibits cardiomyocyte apoptosis by reducing K+ currents. Am J Physiol Cell Physiol 284(6):C1405–C1410

    PubMed  CAS  Google Scholar 

  109. Hunter AL, Zhang J, Chen SC, Si X, Wong B, Ekhterae D, Luo H, Granville DJ (2007) Apoptosis repressor with caspase recruitment domain (ARC) inhibits myogenic differentiation. FEBS Lett 581(5):879–884

    PubMed  CAS  Google Scholar 

  110. Geertman R, McMahon A, Sabban EL (1996) Cloning and characterization of cDNAs for novel proteins with glutamic acid-proline dipeptide tandem repeats. Biochim Biophys Acta 1306(2–3):147–152

    PubMed  Google Scholar 

  111. Mercier I, Vuolo M, Madan R, Xue X, Levalley AJ, Ashton AW, Jasmin JF, Czaja MT, Lin EY, Armstrong RC, Pollard JW, Kitsis RN (2005) ARC, an apoptosis suppressor limited to terminally differentiated cells, is induced in human breast cancer and confers chemo- and radiation-resistance. Cell Death Differ 12(6):682–686

    PubMed  CAS  Google Scholar 

  112. Wang M, Qanungo S, Crow MT, Watanabe M, Nieminen AL (2005) Apoptosis repressor with caspase recruitment domain (ARC) is expressed in cancer cells and localizes to nuclei. FEBS Lett 579(11):2411–2415

    PubMed  CAS  Google Scholar 

  113. Weber CH, Vincenz C (2001) The death domain superfamily: a tale of two interfaces? Trends Biochem Sci 26(8):475–481

    PubMed  CAS  Google Scholar 

  114. Park HH, Lo YC, Lin SC, Wang L, Yang JK, Wu H (2007) The death domain superfamily in intracellular signaling of apoptosis and inflammation. Annu Rev Immunol 25:561–586

    PubMed  CAS  Google Scholar 

  115. Nam YJ, Mani K, Ashton AW, Peng CF, Krishnamurthy B, Hayakawa Y, Lee P, Korsmeyer SJ, Kitsis RN (2004) Inhibition of both the extrinsic and intrinsic death pathways through nonhomotypic death-fold interactions. Mol Cell 15(6):901–912

    PubMed  CAS  Google Scholar 

  116. Gustafsson AB, Tsai JG, Logue SE, Crow MT, Gottlieb RA (2004) Apoptosis repressor with caspase recruitment domain protects against cell death by interfering with Bax activation. J Biol Chem 279(20):21233–21238

    PubMed  CAS  Google Scholar 

  117. Gustafsson AB, Sayen MR, Williams SD, Crow MT, Gottlieb RA (2002) TAT protein transduction into isolated perfused hearts: TAT-apoptosis repressor with caspase recruitment domain is cardioprotective. Circulation 106(6):735–739

    PubMed  CAS  Google Scholar 

  118. Chatterjee S, Bish LT, Jayasankar V, Stewart AS, Woo YJ, Crow MT, Gardner TJ, Sweeney HL (2003) Blocking the development of postischemic cardiomyopathy with viral gene transfer of the apoptosis repressor with caspase recruitment domain. J Thorac Cardiovasc Surg 125(6):1461–1469

    PubMed  CAS  Google Scholar 

  119. Donath S, Li P, Willenbockel C, Al-Saadi N, Gross V, Willnow T, Bader M, Martin U, Bauersachs J, Wollert KC, Dietz R, von Harsdorf R (2006) Apoptosis repressor with caspase recruitment domain is required for cardioprotection in response to biomechanical and ischemic stress. Circulation 113(9):1203–1212

    PubMed  CAS  Google Scholar 

  120. Foo RS, Chan LK, Kitsis RN, Bennett MR (2007) Ubiquitination and degradation of the anti-apoptotic protein ARC by MDM2. J Biol Chem 282(8):5529–5535

    PubMed  CAS  Google Scholar 

  121. Nam YJ, Mani K, Wu L, Peng CF, Calvert JW, Foo RS, Krishnamurthy B, Miao W, Ashton AW, Lefer DJ, Kitsis RN (2007) The apoptosis inhibitor ARC undergoes ubiquitin-proteasomal-mediated degradation in response to death stimuli: identification of a degradation-resistant mutant. J Biol Chem 282(8):5522–5528

    PubMed  CAS  Google Scholar 

  122. Klionsky DJ, Emr SD (2000) Autophagy as a regulated pathway of cellular degradation. Science 290(5497):1717–1721

    PubMed  CAS  Google Scholar 

  123. Ohsumi Y (2001) Molecular dissection of autophagy: two ubiquitin-like systems. Nat Rev Mol Cell Biol 2(3):211–216

    PubMed  CAS  Google Scholar 

  124. Liang XH, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H, Levine B (1999) Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402(6762):672–676

    PubMed  CAS  Google Scholar 

  125. Qu X, Yu J, Bhagat G, Furuya N, Hibshoosh H, Troxel A, Rosen J, Eskelinen EL, Mizushima N, Ohsumi Y, Cattoretti G, Levine B (2003) Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest 112(12):1809–1820

    PubMed  CAS  Google Scholar 

  126. Yue Z, Jin S, Yang C, Levine AJ, Heintz N (2003) Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci USA 100(25):15077–15082

    PubMed  CAS  Google Scholar 

  127. Gozuacik D, Kimchi A (2007) Autophagy and cell death. Curr Top Dev Biol 78:217–245

    PubMed  CAS  Google Scholar 

  128. Decker RS, Wildenthal K (1980) Lysosomal alterations in hypoxic and reoxygenated hearts. I. Ultrastructural and cytochemical changes. Am J Pathol 98(2):425–444

    PubMed  CAS  Google Scholar 

  129. Matsui Y, Takagi H, Qu X, Abdellatif M, Sakoda H, Asano T, Levine B, Sadoshima J (2007) Distinct roles of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy. Circ Res 100(6):914–922

    PubMed  CAS  Google Scholar 

  130. de Waal EJ, Vreeling-Sindelarova H, Schellens JP, James J (1986) Starvation-induced microautophagic vacuoles in rat myocardial cells. Cell Biol Int Rep 10(7):527–533

    PubMed  Google Scholar 

  131. Wildenthal K, Dees JH, Buja LM (1977) Cardiac lysosomal derangements in mouse heart after long-term exposure to nonmetabolizable sugars. Circ Res 40(1):26–35

    PubMed  CAS  Google Scholar 

  132. Knaapen MW, Davies MJ, De Bie M, Haven AJ, Martinet W, Kockx MM (2001) Apoptotic versus autophagic cell death in heart failure. Cardiovasc Res 51(2):304–312

    PubMed  CAS  Google Scholar 

  133. Hein S, Arnon E, Kostin S, Schonburg M, Elsasser A, Polyakova V, Bauer EP, Klovekorn WP, Schaper J (2003) Progression from compensated hypertrophy to failure in the pressure-overloaded human heart: structural deterioration and compensatory mechanisms. Circulation 107(7):984–991

    PubMed  Google Scholar 

  134. Dammrich J, Pfeifer U (1983) Cardiac hypertrophy in rats after supravalvular aortic constriction. II. Inhibition of cellular autophagy in hypertrophying cardiomyocytes. Virchows Arch B Cell Pathol Incl Mol Pathol 43(3):287–307

    PubMed  CAS  Google Scholar 

  135. Dammrich J, Pfeifer U (1981) Acute effects of isoproterenol on cellular autophagy. Inhibition in myocardium but stimulation in liver parenchyma. Virchows Arch B Cell Pathol Incl Mol Pathol 38(2):209–218

    Article  PubMed  CAS  Google Scholar 

  136. Bahro M, Pfeifer U (1987) Short-term stimulation by propranolol and verapamil of cardiac cellular autophagy. J Mol Cell Cardiol 19(12):1169–1178

    PubMed  CAS  Google Scholar 

  137. Tanaka Y, Guhde G, Suter A, Eskelinen EL, Hartmann D, Lullmann-Rauch R, Janssen PM, Blanz J, von Figura K, Saftig P (2000) Accumulation of autophagic vacuoles and cardiomyopathy in LAMP-2-deficient mice. Nature 406(6798):902–906

    PubMed  CAS  Google Scholar 

  138. Nakai A, Yamaguchi O, Takeda T, Higuchi Y, Hikoso S, Taniike M, Omiya S, Mizote I, Matsumura Y, Asahi M, Nishida K, Hori M, Mizushima N, Otsu K (2007) The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat Med 13(5):619–624

    PubMed  CAS  Google Scholar 

  139. Hamacher-Brady A, Brady NR, Gottlieb RA (2006) Enhancing macroautophagy protects against ischemia/reperfusion injury in cardiac myocytes. J Biol Chem 281(40):29776–29787

    PubMed  CAS  Google Scholar 

  140. Hamacher-Brady A, Brady NR, Gottlieb RA, Gustafsson AB (2006) Autophagy as a protective response to Bnip3-mediated apoptotic signaling in the heart. Autophagy 2(4):307–309

    PubMed  CAS  Google Scholar 

  141. Hamacher-Brady A, Brady NR, Logue SE, Sayen MR, Jinno M, Kirshenbaum LA, Gottlieb RA, Gustafsson AB (2007) Response to myocardial ischemia/reperfusion injury involves Bnip3 and autophagy. Cell Death Differ 14(1):146–157

    PubMed  CAS  Google Scholar 

  142. Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N, Packer M, Schneider MD, Levine B (2005) Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122(6):927–939

    PubMed  CAS  Google Scholar 

  143. Breitschopf K, Haendeler J, Malchow P, Zeiher AM, Dimmeler S (2000) Posttranslational modification of Bcl-2 facilitates its proteasome-dependent degradation: molecular characterization of the involved signaling pathway. Mol Cell Biol 20(5):1886–1896

    PubMed  CAS  Google Scholar 

  144. Levine B, Yuan J (2005) Autophagy in cell death: an innocent convict? J Clin Invest 115(10):2679–2688

    PubMed  CAS  Google Scholar 

  145. Levine B, Klionsky DJ (2004) Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 6(4):463–477

    PubMed  CAS  Google Scholar 

  146. Kihara A, Kabeya Y, Ohsumi Y, Yoshimori T (2001) Beclin-phosphatidylinositol 3-kinase complex functions at the trans-golgi network. EMBO Rep 2(4):330–335

    PubMed  CAS  Google Scholar 

  147. Tassa A, Roux MP, Attaix D, Bechet DM (2003) Class III phosphoinositide 3-kinase–Beclin1 complex mediates the amino acid-dependent regulation of autophagy in C2C12 myotubes. Biochem J 376(Pt 3):577–586

    PubMed  CAS  Google Scholar 

  148. Kamada Y, Funakoshi T, Shintani T, Nagano K, Ohsumi M, Ohsumi Y (2000) Tor-mediated induction of autophagy via an Apg1 protein kinase complex. J Cell Biol 150(6):1507–1513

    PubMed  CAS  Google Scholar 

  149. Yu L, Wan F, Dutta S, Welsh S, Liu Z, Freundt E, Baehrecke EH, Lenardo M (2006) Autophagic programmed cell death by selective catalase degradation. Proc Natl Acad Sci USA 103(13):4952–4957

    PubMed  CAS  Google Scholar 

  150. Pyo JO, Jang MH, Kwon YK, Lee HJ, Jun JI, Woo HN, Cho DH, Choi B, Lee H, Kim JH, Mizushima N, Oshumi Y, Jung YK (2005) Essential roles of Atg5 and FADD in autophagic cell death: dissection of autophagic cell death into vacuole formation and cell death. J Biol Chem 280(21):20722–20729

    PubMed  CAS  Google Scholar 

  151. Moretti L, Attia A, Kim KW, Lu B (2007) Crosstalk between Bak/Bax and mTOR signaling regulates radiation-induced autophagy. Autophagy 3(2):142–144

    PubMed  CAS  Google Scholar 

  152. Shimizu S, Kanaseki T, Mizushima N, Mizuta T, Arakawa-Kobayashi S, Thompson CB, Tsujimoto Y (2004) Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes. Nat Cell Biol 6(12):1221–1228

    PubMed  CAS  Google Scholar 

  153. Schweichel JU, Merker HJ (1973) The morphology of various types of cell death in prenatal tissues. Teratology 7(3):253–266

    Google Scholar 

  154. Hall DH, Gu G, Garcia-Anoveros J, Gong L, Chalfie M, Driscoll M (1997) Neuropathology of degenerative cell death in Caenorhabditis elegans. J Neurosci 17(3):1033–1045

    PubMed  CAS  Google Scholar 

  155. Xu K, Tavernarakis N, Driscoll M (2001) Necrotic cell death in C. elegans requires the function of calreticulin and regulators of Ca(2+) release from the endoplasmic reticulum. Neuron 31(6):957–971

    PubMed  CAS  Google Scholar 

  156. Syntichaki P, Xu K, Driscoll M, Tavernarakis N (2002) Specific aspartyl and calpain proteases are required for neurodegeneration in C. elegans. Nature 419(6910):939–944

    PubMed  CAS  Google Scholar 

  157. Zong WX, Ditsworth D, Bauer DE, Wang ZQ, Thompson CB (2004) Alkylating DNA damage stimulates a regulated form of necrotic cell death. Genes Dev 18(11):1272–1282

    PubMed  CAS  Google Scholar 

  158. Holler N, Zaru R, Micheau O, Thome M, Attinger A, Valitutti S, Bodmer JL, Schneider P, Seed B, Tschopp J (2000) Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nat Immunol 1(6):489–495

    PubMed  CAS  Google Scholar 

  159. Nakagawa T, Shimizu S, Watanabe T, Yamaguchi O, Otsu K, Yamagata H, Inohara H, Kubo T, Tsujimoto Y (2005) Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature 434(7033):652–658

    PubMed  CAS  Google Scholar 

  160. Chinnaiyan AM, O’Rourke K, Tewari M, Dixit VM (1995) FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell 81(4):505–512

    PubMed  CAS  Google Scholar 

  161. Matsumura H, Shimizu Y, Ohsawa Y, Kawahara A, Uchiyama Y, Nagata S (2000) Necrotic death pathway in Fas receptor signaling. J Cell Biol 151(6):1247–1256

    PubMed  CAS  Google Scholar 

  162. Yu SW, Wang H, Poitras MF, Coombs C, Bowers WJ, Federoff HJ, Poirier GG, Dawson TM, Dawson VL (2002) Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. Science 297(5579):259–263

    PubMed  CAS  Google Scholar 

  163. Vandenabeele P, Vanden Berghe T, Festjens N (2006) Caspase inhibitors promote alternative cell death pathways. Sci STKE 2006(358):pe44

    PubMed  Google Scholar 

  164. Yousefi S, Perozzo R, Schmid I, Ziemiecki A, Schaffner T, Scapozza L, Brunner T, Simon HU (2006) Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nat Cell Biol 8(10):1124–1132

    PubMed  CAS  Google Scholar 

  165. Mills KR, Reginato M, Debnath J, Queenan B, Brugge JS (2004) Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is required for induction of autophagy during lumen formation in vitro. Proc Natl Acad Sci USA 101(10):3438–3443

    PubMed  CAS  Google Scholar 

  166. Inbal B, Bialik S, Sabanay I, Shani G, Kimchi A (2002) DAP kinase and DRP-1 mediate membrane blebbing and the formation of autophagic vesicles during programmed cell death. J Cell Biol 157(3):455–468

    PubMed  CAS  Google Scholar 

  167. Maiuri MC, Le Toumelin G, Criollo A, Rain JC, Gautier F, Juin P, Tasdemir E, Pierron G, Troulinaki K, Tavernarakis N, Hickman JA, Geneste O, Kroemer G (2007) Functional and physical interaction between Bcl-X(L) and a BH3-like domain in Beclin-1. EMBO J 26:2527–2539

    Google Scholar 

  168. Arico S, Petiot A, Bauvy C, Dubbelhuis PF, Meijer AJ, Codogno P, Ogier-Denis E (2001) The tumor suppressor PTEN positively regulates macroautophagy by inhibiting the phosphatidylinositol 3-kinase/protein kinase B pathway. J Biol Chem 276(38):35243–35246

    PubMed  CAS  Google Scholar 

  169. Degenhardt K, Mathew R, Beaudoin B, Bray K, Anderson D, Chen G, Mukherjee C, Shi Y, Gelinas C, Fan Y, Nelson DA, Jin S, White E (2006) Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell 10(1):51–64

    PubMed  CAS  Google Scholar 

  170. Jia L, Dourmashkin RR, Allen PD, Gray AB, Newland AC, Kelsey SM (1997) Inhibition of autophagy abrogates tumour necrosis factor alpha induced apoptosis in human T-lymphoblastic leukaemic cells. Br J Haematol 98(3):673–685

    PubMed  CAS  Google Scholar 

  171. Qu X, Zou Z, Sun Q, Luby-Phelps K, Cheng P, Hogan RN, Gilpin C, Levine B (2007) Autophagy gene-dependent clearance of apoptotic cells during embryonic development. Cell 128(5):931–946

    PubMed  CAS  Google Scholar 

  172. Golstein P, Kroemer G (2007) Cell death by necrosis: towards a molecular definition. Trends Biochem Sci 32(1):37–43

    PubMed  CAS  Google Scholar 

  173. Tarzami ST, Miao W, Mani K, Lopez L, Factor SM, Berman JW, Kitsis RN (2003) Opposing effects mediated by the chemokine receptor CXCR2 on myocardial ischemia-reperfusion injury: recruitment of potentially damaging neutrophils and direct myocardial protection. Circulation 108(19):2387–2392

    PubMed  CAS  Google Scholar 

  174. Buerke M., Murohara T, Lefer AM (1995) Cardioprotective effects of a C1 esterase inhibitor in myocardial ischemia and reperfusion. Circulation 91(2):393–402

    PubMed  CAS  Google Scholar 

  175. Asai K, Yang GP, Geng YJ, Takagi G, Bishop S, Ishikawa Y, Shannon RP, Wagner TE, Vatner DE, Homcy CJ, Vatner SF (1999) Beta-adrenergic receptor blockade arrests myocyte damage and preserves cardiac function in the transgenic G(salpha) mouse. J Clin Invest 104(5):551–558

    PubMed  CAS  Google Scholar 

  176. Leri A, Claudio PP, Li Q, Wang X, Reiss K, Wang S, Malhotra A, Kajstura J, Anversa P (1998) Stretch-mediated release of angiotensin II induces myocyte apoptosis by activating p53 that enhances the local renin–angiotensin system and decreases the Bcl-2-to-Bax protein ratio in the cell. J Clin Invest 101(7):1326–1342

    PubMed  CAS  Google Scholar 

  177. Reimer KA, Lowe JE, Rasmussen MM, Jennings RB (1977) The wavefront phenomenon of ischemic cell death. 1. Myocardial infarct size vs duration of coronary occlusion in dogs. Circulation 56(5):786–794

    PubMed  CAS  Google Scholar 

  178. Shizukuda Y, Buttrick PM, Geenen DL, Borczuk AC, Kitsis RN, Sonnenblick EH (1998) Beta-adrenergic stimulation causes cardiocyte apoptosis: influence of tachycardia and hypertrophy. Am J Physiol 275(3 Pt 2):H961–H968

    PubMed  CAS  Google Scholar 

  179. Hayakawa Y, Chandra M, Miao W, Shirani J, Dorn GW, Armstrong RC, Kitsis RN (2003) Inhibition of cardiac myocyte apoptosis improves cardiac function and abolishes mortality in the peripartum cardiomyopathy of G q transgenic mice. Circulation 108(24):3036–3041

    PubMed  CAS  Google Scholar 

  180. Iwai-Kanai E, Hasegawa K, Araki M, Kakita T, Morimoto T, Sasayama S (1999) Alpha- and beta-adrenergic pathways differentially regulate cell type-specific apoptosis in rat cardiac myocytes. Circulation 100(3):305–311

    PubMed  CAS  Google Scholar 

  181. Vulapalli SR, Chen Z, Chua BH, Wang T, Liang CS (2002) Cardioselective overexpression of HO-1 prevents I/R-induced cardiac dysfunction and apoptosis. Am J Physiol Heart Circ Physiol 283(2):H688–H694

    PubMed  CAS  Google Scholar 

  182. Tao L, Gao E, Bryan NS, Qu Y, Liu HR, Hu A, Christopher TA, Lopez BL, Yodoi J, Koch WJ, Feelisch M, Ma XL (2004) Cardioprotective effects of thioredoxin in myocardial ischemia and reperfusion: role of S-nitrosation [corrected]. Proc Natl Acad Sci USA 101(31):11471–11476

    PubMed  Google Scholar 

  183. Inagaki K, Churchill E, Mochly-Rosen D (2006) Epsilon protein kinase C as a potential therapeutic target for the ischemic heart. Cardiovasc Res 70(2):222–230

    PubMed  CAS  Google Scholar 

  184. Yang Y, Zhu WZ, Joiner ML, Zhang R, Oddis CV, Hou Y, Yang J, Price EE, Gleaves L, Eren M, Ni G, Vaughan DE, Xiao RP, Anderson ME (2006) Calmodulin kinase II inhibition protects against myocardial cell apoptosis in vivo. Am J Physiol Heart Circ Physiol 291(6):H3065–H3075

    PubMed  CAS  Google Scholar 

  185. Fujio Y, Nguyen T, Wencker D, Kitsis RN, Walsh K (2000) Akt promotes survival of cardiomyocytes in vitro and protects against ischemia-reperfusion injury in mouse heart. Circulation 101(6):660–667

    PubMed  CAS  Google Scholar 

  186. Miao W, Luo Z, Kitsis RN, Walsh K (2000) Intracoronary, adenovirus-mediated Akt gene transfer in heart limits infarct size following ischemia-reperfusion injury in vivo. J Mol Cell Cardiol 32(12):2397–2402

    PubMed  CAS  Google Scholar 

  187. Nakamura T, Mizuno S, Matsumoto K, Sawa Y, Matsuda H (2000) Myocardial protection from ischemia/reperfusion injury by endogenous and exogenous HGF. J Clin Invest 106(12):1511–1519

    PubMed  CAS  Google Scholar 

  188. Buerke M, Murohara T, Skurk C, Nuss C, Tomaselli K, Lefer AM (1995) Cardioprotective effect of insulin-like growth factor I in myocardial ischemia followed by reperfusion. Proc Natl Acad Sci USA 92(17):8031–8035

    PubMed  CAS  Google Scholar 

  189. Lee P, Sata M, Lefer DJ, Factor SM, Walsh K, Kitsis RN (2002) The Fas pathway is a critical mediator of cardiac myocyte death and myocardial infarction during ischemia/reperfusion in vivo. Am J Physiol Heart Circ Physiol 284:H456–H463

    Google Scholar 

  190. Hochhauser E, Kivity S, Offen D, Maulik N, Otani H, Barhum Y, Pannet H, Shneyvays V, Shainberg A, Goldshtaub V, Tobar A, Vidne BA (2003) Bax ablation protects against myocardial ischemia-reperfusion injury in transgenic mice. Am J Physiol Heart Circ Physiol 284(6):H2351–H2359

    PubMed  CAS  Google Scholar 

  191. Holly TA, Drincic A, Byun Y, Nakamura S, Harris K, Klocke FJ, Cryns VL (1999) Caspase inhibition reduces myocyte cell death induced by myocardial ischemia and reperfusion in vivo. J Mol Cell Cardiol 31(9):1709–1715

    PubMed  CAS  Google Scholar 

  192. Yaoita H, Ogawa K, Maehara K, Maruyama Y (1998) Attenuation of ischemia/reperfusion injury in rats by a caspase inhibitor. Circulation 97(3):276–281

    PubMed  CAS  Google Scholar 

  193. Liu HR, Gao E, Hu A, Tao L, Qu Y, Most P, Koch WJ, Christopher TA, Lopez BL, Alnemri ES, Zervos AS, Ma XL (2005) Role of Omi/HtrA2 in apoptotic cell death after myocardial ischemia and reperfusion. Circulation 111(1):90–96

    PubMed  CAS  Google Scholar 

  194. Gezelius C, Eriksson A (1988) Neoplastic disease in a medicolegal autopsy material. A retrospective study in northern Sweden. Z Rechtsmed 101(2):115–130

    PubMed  CAS  Google Scholar 

  195. Murphy GK (1977) Cancer and the coroner. JAMA 237(8):786–788

    PubMed  CAS  Google Scholar 

  196. Toth A, Nickson P, Qin LL, Erhardt P (2006) Differential regulation of cardiomyocyte survival and hypertrophy by MDM2, an E3 ubiquitin ligase. J Biol Chem 281(6):3679–3689

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kartik Mani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mani, K. Programmed cell death in cardiac myocytes: strategies to maximize post-ischemic salvage. Heart Fail Rev 13, 193–209 (2008). https://doi.org/10.1007/s10741-007-9073-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-007-9073-7

Keywords

Navigation