Skip to main content
Log in

Biochemical and enzymatic properties of the M1 family of aminopeptidases involved in the regulation of blood pressure

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

It is becoming evident that several aminopeptidases belonging to the M1 family such as aminopeptidase A (APA), placental leucine aminopeptidase (P-LAP), and adipocyte-derived leucine aminopeptidase (A-LAP) play important roles in the regulation of blood pressure under both the physiological and pathological conditions. They share HEXXH(X)18E zinc-binding and GAMEN motifs essential for enzymatic activities. In this review, the current situation regarding the biochemical characteristics of these enzymes including enzymatic properties and modes of action is summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

A-LAP:

Adipocyte-derived leucine aminopeptidase

Ang:

Angiotensin

APA:

Aminopeptidase A

APN:

Aminopeptidase N

BP:

Blood pressure

GLUT:

Glucose transporter

P-LAP:

Placental leucine aminopeptidase

RAS:

Renin-angiotensin system

References

  1. Reaux A, Fournie-Zaluski MC, Llorens-Cortes C (2001) Angiotensin III: a central regulator of vasopressin release and blood pressure. Trends Endocrinol Metab 12:157–162

    Article  PubMed  CAS  Google Scholar 

  2. Banegas I, Prieto I, Vives F, Alba F, de Gasparo M, Segarra AB, Hermoso F, Duran R, Ramirez M (2006) Brain aminopeptidases and hypertension. J Renin Angiotensin Aldosterone Syst 7:129–134

    Article  PubMed  CAS  Google Scholar 

  3. Ruiz-Ortega M, Esteban V, Egido J (2007) The regulation of the inflammatory response through nuclear factor-κB pathway by angiotensin IV extends the role of the renin angiotensin system in cardiovascular diseases. Trends Cardiovasc Med 17:19–25

    Article  PubMed  CAS  Google Scholar 

  4. Wright JW, Jensen LL, Cushing LL, Harding JW (1989) Leucine aminopeptidase M-induced reductions in blood pressure in spontaneously hypertensive rats. Hypertension 13:910–915

    PubMed  CAS  Google Scholar 

  5. Wright JW, Mizutani S, Murray CE, Amir HZ, Harding JW (1990) Aminopeptidase-induced elevations and reductions in blood pressure in the spontaneously hypertensive rat. J Hypertens 8:969–974

    Article  PubMed  CAS  Google Scholar 

  6. Wright JW, Amir HZ, Murray CE, Roberts KA, Harding JW, Mizutani S, Ward PE (1991) Use of aminopeptidase M as a hypotensive agent in spontaneously hypertensive rats. Brain Res Bull 27:545–551

    Article  PubMed  CAS  Google Scholar 

  7. Reaux A, Fournie-Zaluski MC, David C, Zini S, Roques BP, Corvol P, Llorens-Cortes C (1999) Aminopeptidase A inhibitors as potential central antihypertensive agents. Proc Natl Acad Sci U S A 96:13415–13420

    Article  PubMed  CAS  Google Scholar 

  8. Zini S, Fournie-Zaluski MC, Chauvel E, Roques BP, Corvol P, Llorens-Cortes C (1996) Identification of metabolic pathways of brain angiotensin II and III using specific aminopeptidase inhibitors: predominant role of angiotensin III in the control of vasopressin release. Proc Natl Acad Sci U S A 93:11968–11973

    Article  PubMed  CAS  Google Scholar 

  9. Kotlo K, Hughes DE, Herrera VL, Ruiz-Opazo N, Costa RH, Robey RB, Danziger RS (2007) Functional polymorphism of the Anpep gene increases promoter activity in the Dahl salt-resistant rat. Hypertension 49:467–472

    Article  PubMed  CAS  Google Scholar 

  10. Turner AJ (1998) Membrne alanyl aminopeptidase. In: Barret A, Rawlings ND, Woessner JF (eds) Handbook of proteolytic enzymes. Academic Press Inc., San Diego, pp. 994–1032

    Google Scholar 

  11. Goto Y, Hattori A, Ishii Y, Mizutani S, Tsujimoto M (2006) Enzymatic properties of human aminopeptidase A: Regulation of its enzymatic activity by calcium and angiotensin IV. J Biol Chem 281:23503–23513

    Article  PubMed  CAS  Google Scholar 

  12. Lalu K, Lampelo S, Vanha-Perttula T (1986) Characterization of three aminopeptidases purified from maternal serum, Biochim. Biophys Acta 873:190–197

    CAS  Google Scholar 

  13. Ofner D, Hooper NM (2002) The C-terminal domain, but not the interchain disulphide, is required for the activity and intracellular trafficking of aminopeptidase A. Biochem. J 362:191–197

    Article  PubMed  CAS  Google Scholar 

  14. Rozenfeld R, Muller L, El Messari S, Llorens-Cortes C (2004) The C-terminal domain of aminopeptidase A is an intramolecular chaperone required for the correct folding, cell surface expression, and activity of this monozinc aminopeptidase. J Biol Chem 279:43285–43295

    Article  PubMed  CAS  Google Scholar 

  15. Danielsen EM, Noren O, Sjostrom H, Ingram J, Kenny AJ (1980) Proteins of the kidney microvillar membrane: Aspartate aminopeptidase: purification by immunoadsorbent chromatography and properties of the detergent- and proteinase-solubilized forms. Biochem. J 189:591–603

    PubMed  CAS  Google Scholar 

  16. Wang J, Cooper MD (1993) Histidine residue in the zinc-binding motif of aminopeptidase A is critical for enzymatic activity. Proc. Natl Acad Sci U S A 90:1222–1226

    Article  PubMed  CAS  Google Scholar 

  17. Vazeux G, Wang J, Corvol P, Llorens-Cortes C (1996) Identification of glutamate residues essential for catalytic activity and zinc coordination in aminopeptidase A. J Biol Chem 271:9069–9074

    Article  PubMed  CAS  Google Scholar 

  18. Vazeux G, Iturrioz X, Corvol P, Llorens-Cortes C (1998) A glutamate residue contributes to the exopeptidase specificity in aminopeptidase A. Biochem. J 334:407–413

    PubMed  CAS  Google Scholar 

  19. Iturrioz X, Rozenfeld R, Michaud A, Corvol P, Llorens-Cortes C (2001) Study of asparagine 353 in aminopeptidase A: characterization of a novel motif (GXMEN) implicated in exopeptidase specificity of monozinc aminopeptidases. Biochemistry 40:14440–14448

    Article  PubMed  CAS  Google Scholar 

  20. Vazeux G, Iturrioz X, Corvol P, Llorens-Cortes C (1997) A tyrosine residue essential for catalytic activity in aminopeptidase A. Biochem J 327:883–889

    PubMed  Google Scholar 

  21. Luciani N, Marie-Claire C, Ruffet E, Beaumont A, Roques BP, Fournie-Zaluski MC (1998) Characterization of Glu350 as a critical residue involved in the N-terminal amine binding site of aminopeptidase N (EC 3.4.11.2): insights into its mechanism of action. Biochemistry 37:686–692

    Article  PubMed  CAS  Google Scholar 

  22. Rozenfeld R, Iturrioz X, Maigret B, Llorens-Cortes C (2002) Contribution of molecular modeling and site-directed mutagenesis to the identification of two structural residues, Arg-220 and Asp-227, in aminopeptidase A. J Biol Chem 277:29242–29252

    Article  PubMed  CAS  Google Scholar 

  23. Rozenfeld R, Iturrioz X, Okada M, Maigret B, Llorens-Cortes C (2003) Contribution of molecular modeling and site-directed mutagenesis to the identification of a new residue, glutamate 215 involved in the exopeptidase specificity of aminopeptidase A Biochemistry 42:14785–14793

    Article  PubMed  CAS  Google Scholar 

  24. Iturrioz X, Vazeux G, Celerier J, Corvol P, Llorens-Cortes C (2000) Histidine 450 plays a critical role in catalysis and, with Ca2+ contributes to the substrate specificity of aminopeptidase A Biochemistry 39:3061–3068

    Article  PubMed  CAS  Google Scholar 

  25. Goto Y, Hattori A, Mizutani S, Tsujimoto M (2007) Asparatic acid-221 is critical in the calcium-induced modulation of the enzymatic activity of human aminopeptidase A. J Biol Chem (in press)

  26. Yamahara N, Nomura S, Suzuki T, Itakura A, Ito M, Okamoto T, Tsujimoto M, Nakazato H, Mizutani S (2000) Placental leucine aminopeptidase/oxytocinase in maternal serum and placenta during normal pregnancy. Life Sci 66:1401–1410

    Article  PubMed  CAS  Google Scholar 

  27. Kozaki H, Itakura A, Okamura M, Ohno Y, Wakai K, Mizutani S (2001) Maternal serum placental leucine aminopeptidase (P-LAP)/oxytocinase and preterm delivery. Int J Gynaecol Obstet 73:207–213

    Article  PubMed  CAS  Google Scholar 

  28. Nomura S, Ito T, Yamamoto E, Sumigama S, Iwase A, Okada M, Shibata K, Ando H, Ino K, Kikkawa F, Mizutani S (2005) Gene regulation and physiological function of placental leucine aminopeptidase/oxytocinase during pregnancy. Biochim Biophys Acta 1751:19–25

    PubMed  CAS  Google Scholar 

  29. Johnson MP, Fitzpatrick E, Dyer TD, Jowett JB, Brennecke SP, Blangero J, Moses EK (2007) Identification of two novel quantitative trait loci for pre-eclampsia susceptibility on chromosomes 5q and 13q using a variance components-based linkage approach. Mol Hum Reprod 13:61–67

    Article  PubMed  CAS  Google Scholar 

  30. Rogi T, Tsujimoto M, Nakazato H, Mizutani S, Tomoda Y (1996) Human placental leucine aminopeptidase/oxytocinase: A new member of type II membrane-spanning zinc metallopeptidase family. J Biol Chem 271:56–61

    Article  PubMed  CAS  Google Scholar 

  31. Matsumoto H, Rogi T, Yamashiro K, Kodama S, Tsuruoka N, Hattori A, Takio K, Mizutani S, Tsujimoto M (2000) Characterization of a recombinant soluble form of human placental leucine aminopeptidase/oxytocinase expressed in Chinese hamster ovary cells. Eur J Biochem 267:46–52

    Article  PubMed  CAS  Google Scholar 

  32. Ito N, Nomura S, Iwase A, Ito T, Kikkawa F, Tsujimoto M, Ishiura S, Mizutani S (2004) ADAMs, a disintegrin and metalloproteinases, mediate shedding of oxytocinase. Biochem Biophys Res Commun 314:1008–1013

    Article  PubMed  CAS  Google Scholar 

  33. Laustsen PG, Vang S, Kristensen T (2001) Mutational analysis of the active site of human insulin-regulated aminopeptidase. Eur J Biochem 268:98–104

    Article  PubMed  CAS  Google Scholar 

  34. Ye S, Chai SY, Lew RA, Albiston AL (2007) Insulin-regulated aminopeptidase: analysis of peptide substrate and inhibitor binding to the catalytic domain. Biol Chem 388:399–403

    Article  PubMed  CAS  Google Scholar 

  35. Tsujimoto M, Hattori A (2005) The oxytocinase subfamily of M1 aminopeptidases. Biochim Biophys Acta 1751:9–18

    PubMed  CAS  Google Scholar 

  36. Peck GR, Ye S, Pham V, Fernando RN, Macaulay SL, Chai SY, Albiston AL (2006) Interaction of the Akt substrate, AS160, with the glucose transporter 4 vesicle marker protein, insulin-regulated aminopeptidase. Mol Endocrinol 20:2576–2583

    Article  PubMed  CAS  Google Scholar 

  37. Hosaka T, Brooks CC, Presman E, Kim SK, Zhang Z, Breen M, Gross DN, Sztul E, Pilch PF (2005) p115 interacts with the GLUT4 vesicle protein, IRAP, and plays a critical role in insulin-stimulated GLUT4 translocation. Mol Biol Cell 16:2882–2890

    Article  PubMed  CAS  Google Scholar 

  38. Garvey WT, Maianu L, Zhu JH, Brechtel-Hook G, Wallace P, Baron AD (1998) Evidence for defects in the trafficking and translocation of GLUT4 glucose transporters in skeletal muscle as a cause of human insulin resistance. J Clin Invest 101:2377–2386

    Article  PubMed  CAS  Google Scholar 

  39. Masuda S, Hattori A, Matsumoto H, Miyazawa S, Natori Y, Mizutani S, Tsujimoto M (2003) Involvement of the V2 receptor in vasopressin-stimulated translocation of placental leucine aminopeptidase/oxytocinase in renal cells. Eur J Biochem 270:1988–1994

    Article  PubMed  CAS  Google Scholar 

  40. Albiston AL, McDowall SG, Matsacos D, Sim P, Clune E, Mustafa T, Lee J, Mendelsohn FA, Simpson RJ, Connolly LM, Chai SY (2001) Evidence that the angiotensin IV (AT(4)) receptor is the enzyme insulin-regulated aminopeptidase. J Biol Chem 276:48623–48626

    Article  PubMed  CAS  Google Scholar 

  41. Lew RA, Mustafa T, Ye S, McDowall S, Chai SY, Albiston L A (2003) Angiotensin AT4 ligands are potent, competitive inhibitors of insulin regulated aminopeptidase (IRAP). J Neurochem 86:344–350

    Article  PubMed  CAS  Google Scholar 

  42. Stragier B, Demaegdt H, De Bundel D, Smolders I, Sarre S, Vauquelin G, Ebinger G, Michotte Y, Vanderheyden P (2007) Involvement of insulin-regulated aminopeptidase and/or aminopeptidase N in the angiotensin IV-induced effect on dopamine release in the striatum of the rat. Brain Res 1131:97–105

    Article  PubMed  CAS  Google Scholar 

  43. Stragier B, Clinckers R, Meurs A, De Bundel D, Sarre S, Ebinger G, Michotte Y, Smolders I (2006) Involvement of the somatostatin-2 receptor in the anti-convulsant effect of angiotensin IV against pilocarpine-induced limbic seizures in rats. J Neurochem 98:1100–1113

    Article  PubMed  CAS  Google Scholar 

  44. Matsumoto H, Nagasaka T, Hattori A, Rogi T, Tsuruoka N, Mizutani S, Tsujimoto M (2001) Expression of placental leucine aminopeptidase/oxytocinase in neuronal cells and its action on neuronal peptides. Eur J Biochem 268:3259–3266

    Article  PubMed  CAS  Google Scholar 

  45. Fruitier-Arnaudin I, Cohen M, Bordenave S, Sannier F, Piot JM (2002) Comparative effects of angiotensin IV and two hemorphins on angiotensin-converting enzyme activity. Peptides 23:1465–1470

    Article  PubMed  CAS  Google Scholar 

  46. Maruyama M, Hattori A, Goto Y, Ueda M, Maeda M, Fujiwara H, Tsujimoto M (2007) Laeverin/aminopeptidase Q: a novel bestatin sensitive leucine aminopeptidase belonging to the M1 family of aminopeptidases. J Biol Chem 282:20088–20096

    Google Scholar 

  47. Hattori A, Matsumoto H, Mizutani S, Tsujimoto M (1999) Molecular cloning of adipocyte-derived leucine aminopeptidase highly related to placental leucine aminopeptidase/oxytocinase. J Biochem (Tokyo) 125:931–938

    CAS  Google Scholar 

  48. Hattori A, Kitatani K, Matsumoto H, Miyazawa S, Rogi T, Tsuruoka N, Mizutani S, Natori Y, Tsujimoto M (2000) Characterization of recombinant human adipocyte-derived leucine aminopeptidase expressed in Chinese hamster ovary cells. J Biochem (Tokyo) 128:755–762

    CAS  Google Scholar 

  49. Saric T, Chang SC, Hattori A, York IA, Markant S, Rock KL, Tsujimoto M, Goldberg AL (2002) An IFN-γ-induced aminopeptidase in the ER, ERAP1, trims precursors to MHC class I-presented peptides. Nat Immunol 3:1169–1176

    Article  PubMed  CAS  Google Scholar 

  50. Chang SC, Momburg F, Bhutani N, Goldberg AL (2005) The ER aminopeptidase, ERAP1, trims precursors to lengths of MHC class I peptides by a “molecular ruler” mechanism. Proc Natl Acad Sci U S A 102:17107–17012

    Article  PubMed  CAS  Google Scholar 

  51. Yamamoto N, Nakayama J, Yamakawa-Kobayashi K, Hamaguchi H, Miyazaki R, Arinami T (2002) Identification of 33 polymorphisms in the adipocyte-derived leucine aminopeptidase (ALAP) gene and possible association with hypertension. Hum Mutat 19:251–257

    Article  PubMed  CAS  Google Scholar 

  52. Hallberg P, Lind L, Michaelsson K, Kurland L, Kahan T, Malmqvist K, Ohman KP, Nystrom F, Liljedahl U, Syvanen AC, Melhus H (2003) Adipocyte-derived leucine aminopeptidase genotype and response to antihypertensive therapy. BMC Cardiovasc Disord 3:11. http://www.biomedcentral.com/1471–2261/3/11

  53. Goto Y, Hattori A, Ishii Y, Tsujimoto M (2006) Reduced activity of the hypertension-associated Lys528Arg mutant of human adipocyte-derived leucine aminopeptidase (A-LAP)/ER-aminopeptidase-1. FEBS Lett 580:1833–1838

    Article  PubMed  CAS  Google Scholar 

  54. Miyashita H, Yamazaki T, Akada T, Niizeki O, Ogawa M, Nishikawa S, Sato Y (2002) A mouse orthologue of puromycin-insensitive leucyl-specific aminopeptidase is expressed in endothelial cells and plays an important role in angiogenesis. Blood 99:3241–3249

    Article  PubMed  CAS  Google Scholar 

  55. Cui X, Hawari F, Alsaaty S, Lawrence M, Combs CA, Geng W, Rouhani FN, Miskinis D, Levine SJ (2002) Identification of ARTS-1 as a novel TNFR1-binding protein that promotes TNFR1 ectodomain shedding. J Clin Invest 110:515–526

    PubMed  CAS  Google Scholar 

  56. Yamazaki T, Akada T, Niizeki O, Suzuki T, Miyashita H, Sato Y (2004) Puromycin-insensitive leucyl-specific aminopeptidase (PILSAP) binds and catalyzes PDK1, allowing VEGF-stimulated activation of S6K for endothelial cell proliferation and angiogenesis Blood 104:2345–2352

    Article  PubMed  CAS  Google Scholar 

  57. Islam A, Adamik B, Hawari FI, Ma G, Rouhani FN, Zhang J, Levine SJ (2006) Extracellular TNFR1 release requires the calcium-dependent formation of a nucleobindin 2-ARTS-1 complex. J Biol Chem 281:6860–6873

    Article  PubMed  CAS  Google Scholar 

  58. Tanioka T, Hattori A, Masuda S, Nomura Y, Nakayama H, Mizutani S, Tsujimoto M (2003) Human leukocyte-derived arginine aminopeptidase; The third member of the oxytocinase subfamily of aminopeptidases. J Biol Chem 278:32275–32283

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masafumi Tsujimoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsujimoto, M., Goto, Y., Maruyama, M. et al. Biochemical and enzymatic properties of the M1 family of aminopeptidases involved in the regulation of blood pressure. Heart Fail Rev 13, 285–291 (2008). https://doi.org/10.1007/s10741-007-9064-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-007-9064-8

Keywords

Navigation