Skip to main content

Advertisement

Log in

Cardioprotection in stunned and hibernating myocardium

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Although myocardial ischemia was once thought to result in irreversible cellular damage, it is now demonstrated that in cardiac tissue, submitted to the stress of oxygen and substrate deprivation, endogenous mechanisms of cell survival may be activated. These molecular mechanisms result in physiological conditions of adaptation to ischemia, known as myocardial stunning and hibernation. These conditions result from a switch in gene and protein expression, which sustains cardiac cell survival in a context of oxygen deprivation and during the stress of reperfusion. The pattern of cell survival elicited by ischemia in myocardial stunning or hibernation results in the activation of cytoprotective mechanisms that will protect the heart against further ischemic damage, a condition referred to as ischemic preconditioning. The basic mechanisms underlying stunning and hibernation are still a matter of intense research, which includes the discovery and characterization of novel survival genes not described in the heart before, or the unraveling of new cellular processes, such as autophagy. Understanding how the molecular adaptation of the cardiac myocyte during stress sustains its survival in these conditions therefore might help defining novel mechanisms of endogenous myocardial salvage, in order to expand the conditions of maintained cellular viability and functional salvage of the ischemic myocardium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ginks WR, Sybers HD, Maroko PR, Covell JW, Sobel BE, Ross J Jr (1972) Coronary artery reperfusion. II. Reduction of myocardial infarct size at 1 week after the coronary occlusion. J Clin Invest 51:2717–2723

    PubMed  CAS  Google Scholar 

  2. Maroko PR, Kjekshus JK, Sobel BE, Watanabe T, Covell JW, Ross J Jr et al (1971) Factors influencing infarct size following experimental coronary artery occlusions. Circulation 43:67–82

    PubMed  CAS  Google Scholar 

  3. Maroko PR, Libby P, Ginks WR, Bloor CM, Shell WE, Sobel BE et al (1972) Coronary artery reperfusion. I. Early effects on local myocardial function and the extent of myocardial necrosis. J Clin Invest 51:2710–2716

    PubMed  CAS  Google Scholar 

  4. Matsuzaki M, Gallagher KP, Kemper WS, White F, Ross J Jr (1983) Sustained regional dysfunction produced by prolonged coronary stenosis: gradual recovery after reperfusion. Circulation 68:170–182

    PubMed  CAS  Google Scholar 

  5. Theroux P, Ross J Jr, Franklin D, Kemper WS, Sasayama S (1976) Coronary arterial reperfusion. III. Early and late effects on regional myocardial function and dimensions in conscious dogs. Am J Cardiol 38:599–606

    Article  PubMed  CAS  Google Scholar 

  6. Heyndrickx GR, Millard RW, McRitchie RJ, Maroko PR, Vatner SF (1975) Regional myocardial functional and electrophysiological alterations after brief coronary artery occlusion in conscious dogs. J Clin Invest 56:978–985

    PubMed  CAS  Google Scholar 

  7. Ambrosio G, Betocchi S, Pace L, Losi MA, Perrone-Filardi P, Soricelli A et al (1996) Prolonged impairment of regional contractile function after resolution of exercise-induced angina. Evidence of myocardial stunning in patients with coronary artery disease. Circulation 94:2455–2464

    PubMed  CAS  Google Scholar 

  8. Ambrosio G, Tritto I (2001) Clinical manifestations of myocardial stunning. Coron Artery Dis 12:357–361

    Article  PubMed  CAS  Google Scholar 

  9. Bolli R (1992) Myocardial ‘stunning’ in man. Circulation 86:1671–1691

    PubMed  CAS  Google Scholar 

  10. Kloner RA, Jennings RB (2001) Consequences of brief ischemia: stunning, preconditioning, and their clinical implications: part 1. Circulation 104:2981–2989

    PubMed  CAS  Google Scholar 

  11. Rahimtoola SH (1985) A perspective on the three large multicenter randomized clinical trials of coronary bypass surgery for chronic stable angina. Circulation 72:V123–V135

    PubMed  CAS  Google Scholar 

  12. Diamond GA, Forrester JS, deLuz PL, Wyatt HL, Swan HJ (1978) Post-extrasystolic potentiation of ischemic myocardium by atrial stimulation. Am Heart J 95:204–209

    Article  PubMed  CAS  Google Scholar 

  13. Vanoverschelde JL, Wijns W, Depre C, Essamri B, Heyndrickx GR, Borgers M et al (1993) Mechanisms of chronic regional postischemic dysfunction in humans. New insights from the study of noninfarcted collateral-dependent myocardium. Circulation 87:1513–1523

    PubMed  CAS  Google Scholar 

  14. Feigl EO (1983) Coronary physiology. Physiol Rev 63:1–205

    PubMed  CAS  Google Scholar 

  15. Uren NG, Melin JA, De Bruyne B, Wijns W, Baudhuin T, Camici PG (1994) Relation between myocardial blood flow and the severity of coronary-artery stenosis. N Engl J Med 330:1782–1788

    Article  PubMed  CAS  Google Scholar 

  16. Berne RM (1980) The role of adenosine in the regulation of coronary blood flow. Circ Res 47:807–813

    PubMed  CAS  Google Scholar 

  17. Kim SJ, Peppas A, Hong SK, Yang G, Huang Y, Diaz G et al (2003) Persistent stunning induces myocardial hibernation and protection: flow/function and metabolic mechanisms. Circ Res 92:1233–1239

    Article  PubMed  CAS  Google Scholar 

  18. Camici PG, Wijns W, Borgers M, De Silva R, Ferrari R, Knuuti J et al (1997) Pathophysiological mechanisms of chronic reversible left ventricular dysfunction due to coronary artery disease (hibernating myocardium). Circulation 96:3205–3214

    PubMed  CAS  Google Scholar 

  19. Wijns W, Vatner SF, Camici PG (1998) Hibernating myocardium. N Engl J Med 339:173–181

    Article  PubMed  CAS  Google Scholar 

  20. Tamaki N, Yonekura Y, Yamashita K, Saji H, Magata Y, Senda M et al (1989) Positron emission tomography using fluorine-18 deoxyglucose in evaluation of coronary artery bypass grafting. Am J Cardiol 64:860–865

    Article  PubMed  CAS  Google Scholar 

  21. Borgers M, Ausma J (1995) Structural aspects of the chronic hibernating myocardium in man. Basic Res Cardiol 90:44–46

    PubMed  CAS  Google Scholar 

  22. Arai AE, Pantely GA, Anselone CG, Bristow J, Bristow JD (1991) Active downregulation of myocardial energy requirements during prolonged moderate ischemia in swine. Circ Res 69:1458–1469

    PubMed  CAS  Google Scholar 

  23. Schulz R, Guth BD, Pieper K, Martin C, Heusch G (1992) Recruitment of an inotropic reserve in moderately ischemic myocardium at the expense of metabolic recovery. A model of short-term hibernation. Circ Res 70:1282–1295

    PubMed  CAS  Google Scholar 

  24. Schulz R, Rose J, Martin C, Brodde OE, Heusch G (1993) Development of short-term myocardial hibernation. Its limitation by the severity of ischemia and inotropic stimulation. Circulation 88:684–695

    PubMed  CAS  Google Scholar 

  25. Chen C, Chen L, Fallon JT, Ma L, Li L, Bow L et al (1996) Functional and structural alterations with 24-hour myocardial hibernation and recovery after reperfusion. A pig model of myocardial hibernation. Circulation 94:507–516

    PubMed  CAS  Google Scholar 

  26. Kudej RK, Ghaleh B, Sato N, Shen YT, Bishop SP, Vatner SF (1998) Ineffective perfusion-contraction matching in conscious, chronically instrumented pigs with an extended period of coronary stenosis. Circ Res 82:1199–1205

    PubMed  CAS  Google Scholar 

  27. Fallavollita JA, Perry BJ, Canty JM Jr (1997) 18F-2-deoxyglucose deposition and regional flow in pigs with chronically dysfunctional myocardium: evidence for transmural variations in chronic hibernating myocardium. Circulation 95:1900–1909

    PubMed  CAS  Google Scholar 

  28. Shen YT, Vatner SF (1995) Mechanism of impaired myocardial function during progressive coronary stenosis in conscious pigs. Hibernation versus stunning? Circ Res 76:479–488

    PubMed  CAS  Google Scholar 

  29. Shen YT, Kudej RK, Bishop SP, Vatner SF (1996) Inotropic reserve and histological appearance of hibernating myocardium in conscious pigs with ameroid-induced coronary stenosis. Basic Res Cardiol 91:479–485

    Article  PubMed  CAS  Google Scholar 

  30. Kudej RK, Kim SJ, Shen YT, Jackson JB, Kudej AB, Yang GP et al (2000) Nitric oxide, an important regulator of perfusion-contraction matching in conscious pigs. Am J Physiol Heart Circ Physiol 279:H451–H456

    PubMed  CAS  Google Scholar 

  31. Depre C, Tomlinson JE, Kudej RK, Gaussin V, Thompson E, Kim SJ et al (2001) Gene program for cardiac cell survival induced by transient ischemia in conscious pigs. Proc Natl Acad Sci U S A 98:9336–9341

    Article  PubMed  CAS  Google Scholar 

  32. Van Eyk J, Dunn M (2002) Proteomic and genomic analysis of cardiovascular disease. Wiley, pp 85–98

  33. Depre C, Kim SJ, John AS, Huang Y, Rimoldi OE, Pepper JR et al (2004) Program of cell survival underlying human and experimental hibernating myocardium. Circ Res 95:433–440

    Article  PubMed  CAS  Google Scholar 

  34. Fallavollita JA, Jacob S, Young RF, Canty JM Jr (1999) Regional alterations in SR Ca(2+)-ATPase, phospholamban, and HSP-70 expression in chronic hibernating myocardium. Am J Physiol 277:H1418–H1428

    PubMed  CAS  Google Scholar 

  35. Holly TA, Drincic A, Byun Y, Nakamura S, Harris K, Klocke FJ et al (1999) Caspase inhibition reduces myocyte cell death induced by myocardial ischemia and reperfusion in vivo. J Mol Cell Cardiol 31:1709–1715

    Article  PubMed  CAS  Google Scholar 

  36. Martin JL, Mestril R, Hilal-Dandan R, Brunton LL, Dillmann WH (1997) Small heat shock proteins and protection against ischemic injury in cardiac myocytes. Circulation 96:4343–4348

    PubMed  CAS  Google Scholar 

  37. Radford NB, Fina M, Benjamin IJ, Moreadith RW, Graves KH, Zhao P et al (1996) Cardioprotective effects of 70-kDa heat shock protein in transgenic mice. Proc Natl Acad Sci U S A 93:2339–2342

    Article  PubMed  CAS  Google Scholar 

  38. Trost SU, Omens JH, Karlon WJ, Meyer M, Mestril R, Covell JW et al (1998) Protection against myocardial dysfunction after a brief ischemic period in transgenic mice expressing inducible heat shock protein 70. J Clin Invest 101:855–862

    PubMed  CAS  Google Scholar 

  39. Depre C, Hase M, Gaussin V, Zajac A, Wang L, Hittinger L et al (2002) H11 kinase is a novel mediator of myocardial hypertrophy in vivo. Circ Res 91:1007–1014

    Article  PubMed  CAS  Google Scholar 

  40. Williams RS, Benjamin IJ (2000) Protective responses in the ischemic myocardium. J Clin Invest 106:813–818

    Article  PubMed  CAS  Google Scholar 

  41. Suzuki G, Lee T-C, Fallavollita JA, Canty JM Jr (2005) Adenoviral gene transfer of FGF-5 to hibernating myocardium improves function and stimulates myocytes to hypertrophy and reenter the cell cycle. Circ Res 96:767–775

    Article  PubMed  CAS  Google Scholar 

  42. Depre C, Taegtmeyer H (2000) Metabolic aspects of programmed cell survival and cell death in the heart. Cardiovasc Res 45:538–548

    Article  PubMed  CAS  Google Scholar 

  43. Vanoverschelde JL, Wijns W, Borgers M, Heyndrickx G, Depre C, Flameng W et al (1997) Chronic myocardial hibernation in humans. From bedside to bench. Circulation 95:1961–1971

    PubMed  CAS  Google Scholar 

  44. Murry CE, Jennings RB, Reimer KA (1986) Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74:1124–1136

    PubMed  CAS  Google Scholar 

  45. Murry CE, Richard VJ, Jennings RB, Reimer KA (1991) Myocardial protection is lost before contractile function recovers from ischemic preconditioning. Am J Physiol 260:H796–H804

    PubMed  CAS  Google Scholar 

  46. Kuzuya T, Hoshida S, Yamashita N, Fuji H, Oe H, Hori M et al (1993) Delayed effects of sublethal ischemia on the acquisition of tolerance to ischemia. Circ Res 72:1293–1299

    PubMed  CAS  Google Scholar 

  47. Marber MS, Latchman DS, Walker JM, Yellon DM (1993) Cardiac stress protein elevation 24 hours after brief ischemia or heat stress is associated with resistance to myocardial infarction. Circulation 88:1264–1272

    PubMed  CAS  Google Scholar 

  48. Bolli R (2001) Cardioprotective function of inducible nitric oxide synthase and role of nitric oxide in myocardial ischemia and preconditioning: an overview of a decade of research. J Mol Cell Cardiol 33:1897–1918

    Article  PubMed  CAS  Google Scholar 

  49. Heusch G, Schulz R, Rahimtoola SH (2005) Myocardial hibernation: a delicate balance. Am J Physiol Heart Circ Physiol 288:H984–H999

    Article  PubMed  CAS  Google Scholar 

  50. Depre C, Wang L, Tomlinson JE, Gaussin V, Abdellatif M, Topper JN et al (2003) Characterization of pDJA1, a cardiac-specific chaperone found by genomic profiling of the post-ischemic swine heart. Cardiovasc Res 58:126–135

    Article  PubMed  CAS  Google Scholar 

  51. Danan IJ, Rashed ER, Depre C (2007) Therapeutic potential of H11 Kinase for the ischemic heart. Cardiovasc Drug Rev 25:14–29

    Article  PubMed  CAS  Google Scholar 

  52. Depre C, Wang L, Sui X, Qiu H, Hong C, Hedhli N et al (2006) H11 kinase prevents myocardial infarction by preemptive preconditioning of the heart. Circ Res 98:280–288

    Article  PubMed  CAS  Google Scholar 

  53. Wencker D, Chandra M, Nguyen K, Miao W, Garantziotis S, Factor SM et al (2003) A mechanistic role for cardiac myocyte apoptosis in heart failure. J Clin Invest 111:1497–1504

    Article  PubMed  CAS  Google Scholar 

  54. Aiello DP, Fu L, Miseta A, Bedwell DM (2002) Intracellular glucose 1-phosphate and glucose 6-phosphate levels modulate Ca2+ homeostasis in Saccharomyces cerevisiae. J Biol Chem 277:45751–45758

    Article  PubMed  CAS  Google Scholar 

  55. Melendez A, Talloczy Z, Seaman M, Eskelinen EL, Hall DH, Levine B (2003) Autophagy genes are essential for dauer development and life-span extension in C. elegans. Science 301:1387–1391

    Article  PubMed  CAS  Google Scholar 

  56. Ohsumi Y (2001) Molecular dissection of autophagy: two ubiquitin-like systems. Nat Rev Mol Cell Biol 2:211–216

    Article  PubMed  CAS  Google Scholar 

  57. Stromhaug PE, Klionsky DJ (2001) Approaching the molecular mechanism of autophagy. Traffic 2:524–531

    Article  PubMed  CAS  Google Scholar 

  58. Boya P, Gonzalez-Polo RA, Casares N, Perfettini JL, Dessen P, Larochette N et al (2005) Inhibition of macroautophagy triggers apoptosis. Mol Cell Biol 25:1025–1040

    Article  PubMed  CAS  Google Scholar 

  59. Canu N, Tufi R, Serafino AL, Amadoro G, Ciotti MT, Calissano P (2005) Role of the autophagic-lysosomal system on low potassium-induced apoptosis in cultured cerebellar granule cells. J Neurochem 92:1228–1242

    Article  PubMed  CAS  Google Scholar 

  60. Decker RS, Wildenthal K (1980) Lysosomal alterations in hypoxic and reoxygenated hearts. I. Ultrastructural and cytochemical changes. Am J Pathol 98:425–444

    PubMed  CAS  Google Scholar 

  61. Hamacher-Brady A, Brady NR, Gottlieb RA (2006) The interplay between pro-death and pro-survival signaling pathways in myocardial ischemia/reperfusion injury: apoptosis meets autophagy. Cardiovasc Drugs Ther 20:445–462

    Article  PubMed  CAS  Google Scholar 

  62. Yan L, Vatner DE, Kim SJ, Ge H, Masurekar M, Massover WH et al (2005) Autophagy in chronically ischemic myocardium. Proc Natl Acad Sci U S A 102:13807–13812

    Article  PubMed  CAS  Google Scholar 

  63. Elsasser A, Vogt AM, Nef H, Kostin S, Mollmann H, Skwara W et al (2004) Human hibernating myocardium is jeopardized by apoptotic and autophagic cell death. J Am Coll Cardiol 43:2191–2199

    Article  PubMed  Google Scholar 

  64. Yan L, Sadoshima J, Vatner DE, Vatner SF (2006) Autophagy: a novel protective mechanism in chronic ischemia. Cell Cycle 5:1175–1177

    PubMed  CAS  Google Scholar 

  65. Hamacher-Brady A, Brady NR, Gottlieb RA (2006) Enhancing macroautophagy protects against ischemia/reperfusion injury in cardiac myocytes. J Biol Chem 281:29776–29787

    Article  PubMed  CAS  Google Scholar 

  66. Hamacher-Brady A, Brady NR, Gottlieb RA, Gustafsson AB (2006) Autophagy as a protective response to Bnip3-mediated apoptotic signaling in the heart. Autophagy 2:307–309

    PubMed  CAS  Google Scholar 

  67. Matsui Y, Takagi H, Qu X, Abdellatif M, Sakoda H, Asano T et al (2007) Distinct roles of autophagy in the heart during ischemia and reperfusion. Roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy. Circ Res 100:914–922

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grants HL72863 to C. Depre, and HL33065, HL 59139, AG14121 and HL33107 to S.F. Vatner.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen F. Vatner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Depre, C., Vatner, S.F. Cardioprotection in stunned and hibernating myocardium. Heart Fail Rev 12, 307–317 (2007). https://doi.org/10.1007/s10741-007-9040-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-007-9040-3

Keywords

Navigation