Skip to main content
Log in

Novel and potential future biomarkers for assessment of the severity and prognosis of chronic heart failure

A clinical review

  • Original Contribution
  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Over the last two decades, the pathophysiology and biomolecular basis of heart failure syndrome has reached sound and more comprehensive understanding. This knowledge has allowed expert researchers and clinicians to explore an entirely new spectrum of potential biochemical markers derived from different cellular and signaling pathways that lead to myocardial hypertrophy, chronic damage of the myocyte, apoptosis, and, ultimately, myocardial remodeling. Indeed, the link between myocardial remodeling and adverse outcomes, as well as the recognition of the myocardial interstitium as a multifunctional dynamic entity strongly influenced by systemic neurohormonal and inflammatory activation, has provided a solid ground for research of biomarkers that might correlate with severity and prognostication in chronic heart failure. This paper reviews and summarize recent literature on some of the most interesting circulating biomarkers with potential use for the stratification of patients with chronic heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Braunwald E, Bristow MR. Congestive heart failure: fifty years of progress. Circulation 2000;102(Suppl 4):IV14–IV23.

    PubMed  CAS  Google Scholar 

  2. Cheung BM, Li CY, Wong LY. Adrenomedullin: its role in the cardiovascular system. Semin Vasc Med 2004;4:129–34.

    PubMed  Google Scholar 

  3. Lainchbury JG. Novel neurohormonal factores in congestive heart failure: adrenomedullin. Curr Cardiol Rep 2001;3:208–14.

    PubMed  CAS  Google Scholar 

  4. Tang WH, Francis G. Neurohormonal upregulation in heart failure. Heart Failure Clin 2005;1:1–9.

    CAS  Google Scholar 

  5. Latini R, Masson S, Anand I et al. The comparative prognostic value of plasma neurohormones at baseline in patients with heart failure enrolled in Val-Heft. Eur Heart J 2004;25:292–9.

    PubMed  CAS  Google Scholar 

  6. Hamada Y, Tanaka N, Murata K et al. Significance of predischarge BNP on one-year outcome in decompensated heart failure-comparative study with echo-Doppler indexes. J Card Fail 2005;11:43–9.

    PubMed  CAS  Google Scholar 

  7. Cheng V, Kazanagra R, Garcia A et al. A rapid bedside test for B-type peptide predicts treatment outcomes in patients admitted for decompensated heart failure: a pilot study. J Am Coll Cardiol 2001;37:386–91.

    PubMed  CAS  Google Scholar 

  8. Hartmann F, Packer M, Coats AJ et al. Prognostic impact of plasma N-terminal pro-brain natriuretic peptide in severe chronic congestive heart failure: a substudy of the Carvedilol Prospective Randomized Cumulative Survival COPERNICUS) trial. Circulation 2004;110:1780–6.

    PubMed  CAS  Google Scholar 

  9. Gardner Rs, Ozalp F, Murday AJ et al. N-Terminal pro-brain natriuretic peptide: a new gold standard in predicting mortality in patients with advanced heart failure. Eur Heart Fail 2003;24:1735–43.

    CAS  Google Scholar 

  10. Song BG, Jeon ES, Kim YH et al. Correlation between levels of pro-B-type natriuretic peptide and degrees of heart failure. Korean J Intern Med 2005;20(1):26–32.

    PubMed  CAS  Google Scholar 

  11. Weber T, Auer J, Eber B. The diagnostic and prognostic value of brain natriuretic peptide and aminoterminal (nt)-pro brain natriuretic peptide. Curr Pharm Des 2005;11(4):511–25.

    PubMed  CAS  Google Scholar 

  12. Fisher C, Berry C, Blue L et al. N-terminal pro B type natriuretic peptide, but not the new putative cardiac hormone relaxin, predicts prognosis in patients with chronic heart failure. Heart 2003;89(8):879–81.

    PubMed  CAS  Google Scholar 

  13. Ng LL, Geeranavar S, Jennings SC et al. Diagnosis oh heart failure using urinary natriuretic peptides. Clin Sci (Lond) 2004;106:129–33.

    CAS  Google Scholar 

  14. Richards M, Nicholls G, Espiner E et al. Comparison of B-type natriuretic peptides for assessment of cardiac function and prognosis in stable ischemic heart disease. J Am Coll Cardiol 2006;47:52–60.

    PubMed  CAS  Google Scholar 

  15. Anwaruddin S, Lloyd-Jones D, Baggish A et al. Renal function, congestive heart failure, and amino-terminal pro-brain natriuretic peptide measurement. J Am Coll Cardiol 2006;47:91–7.

    PubMed  CAS  Google Scholar 

  16. Kisch B. Electron microscopy of the atrium of the heart. I. Guinea pig. Exp Med Surg 1956;14:99–112.

    PubMed  CAS  Google Scholar 

  17. Sudoh T, Kangawa K, Minamino N, Matsuo H. A new natriuretic peptide in porcine brain. Nature 1988;332:78–81.

    PubMed  CAS  Google Scholar 

  18. Bruins S, Fokkema MR, Romer JW et al. High intraindividual variation of B-type natriuretic peptide (BNP) and amino-terimnal proBNP in patients with stable chronic heart failure. Clin Chem 2004;50:2052–8.

    PubMed  CAS  Google Scholar 

  19. Wu Ah, Smith A, Wieczorek S et al. Biological variation for N-terminal pro- and B-type natriuretic peptides and implications for therapeutic monitoring of patients with congestive heart failure. Am J Cardiol 2003;92:628–31.

    PubMed  CAS  Google Scholar 

  20. Winters Cj, Sallman AL, Baker BJ et al. The N-terminus and a 4000 molecular weight peptide from the midportion of the N-terminus of the atrial natriuretic factor prohormone each circulate in man and increase in congestive heart failure. Circulation 1989;80:438–49.

    PubMed  CAS  Google Scholar 

  21. Daggubati S, Parks JR, Overtom RM et al. Adrenomedullin, endothelin, neuropeptide Y, atrial, brain, and C-natriuretic prohormone peptides compared as early heart failure indicators. Cardiovascular Res 1997;36:246–55.

    CAS  Google Scholar 

  22. Vesely DL. Natriuretic peptides and renal failure. Am J Physiol Renal Physiol 2003;285(2):F167–77.

    PubMed  CAS  Google Scholar 

  23. Sabbah HN, Sharov VG. Apoptosis in heart failure. Prog Cardiovasc Dis 1998;40(6):549–62.

    PubMed  CAS  Google Scholar 

  24. Schaper J, Froede R, Hein ST et al. Impairment of the myocardial ultrastructure and changes of the cytoskeleton in dilated cardiomyopathy. Circulation 1991;83:504–14.

    PubMed  CAS  Google Scholar 

  25. Katz AM. Cell death in the failing heart: role of an unnatural growth response to overload. Clin Cardiol 1995;18:36–44.

    Google Scholar 

  26. Majno G, Joris I. Apoptosis, oncosis, and necrosis: an overview of cell death. Am J Pathol 1995;146:3–15.

    PubMed  CAS  Google Scholar 

  27. Narula J, Haider N, Virmani R et al. Apoptosis in myocytes in end-stage heart failure. N Engl J Med 1996;335:1182–9.

    PubMed  CAS  Google Scholar 

  28. Wencker D, Chandra M, Nguyen K et al. A mechanistic role for cardiac myocyte apoptosis in heart failure. J Clin Invest 2003;111:1497–1504.

    PubMed  CAS  Google Scholar 

  29. Cohn JN, Ferrari R, Sharpe N et al. Cardiac remodeling: concepts and clinical implications. J Am Coll Cardiol 2000;35:569–82.

    PubMed  CAS  Google Scholar 

  30. Gerdes AM, Capasso JM. Structural remodeling and mechanical dysfunction of cardiac myocytes in heart failure. J Mol Cell Cardiol 1995;27:849–56.

    PubMed  CAS  Google Scholar 

  31. Mani K, Kitsis RN. Myocyte apoptosis: programming ventricular remodeling. J Am Coll Cardiol 2003;41:761–4.

    PubMed  Google Scholar 

  32. Kostin S, Pool L, Elsasser A et al. Myocytes die by multiple mechanisms in failing human hearts. Circ Res 2003;92:715–24.

    PubMed  CAS  Google Scholar 

  33. Sato Y, Kataoka K, Matsumori A et al. Measuring serum aminoterminal type III procollagen peptide, 7S domain of type IV collagen, and cardiac troponin T in patients with idiopathic cardiomyopathy and secondary cardiomyopathy. Heart 1997;78:505–08.

    PubMed  CAS  Google Scholar 

  34. Setsuta K, Seino Y, Takahashi N et al. Clinical significance of elevated levels of cardiac troponin T in patients with chronic heart failure. Am J Cardiol 1999;84:608–11.

    PubMed  CAS  Google Scholar 

  35. Perna ER, Macin SM, Parras JI et al. Cardiac troponin T levels are associated with poor short and long-term prognosis in patients with acute cardiogenic pulmonary edema. Am Heart J 2002;143:814–20.

    PubMed  CAS  Google Scholar 

  36. Del Carlo CH, O’Connor CM. Cardiac troponins in congestive heart failure. Am Heart J 1999;138:646–53.

    PubMed  CAS  Google Scholar 

  37. Hudson MP, O’Connor CM, Gattis WA et al. Implications of elevated cardiac troponin T in ambulatory patients with heart failure: a prospective analysis. Am Heart J 2004;147:546–52.

    PubMed  CAS  Google Scholar 

  38. Perna ER, Macin SM, Cimbaro Canella JP et al. Minor myocardial damage detected by troponin T is a powerful predictor of long-term prognosis in patients with acute decompensated heart failure. Int J Cardiol 2005;99(2):253–61.

    PubMed  Google Scholar 

  39. Rodriguez-Reyna TS, Arrieta O, Castillo-Martinez L et al. Tumour necrosis factor alpha and troponin T as predictors of poor prognosis in patients with stable heart failure. Clin Invest Med 2005;28(1):23–9.

    PubMed  CAS  Google Scholar 

  40. Sato Y, Taniguchi R, Nagai K et al. Measurements of cardiac troponin T in patients with hypertrophic cardiomyopathy. Heart 2003;89:659–60.

    PubMed  CAS  Google Scholar 

  41. Mitrovic V. SIRIUS II: Safety and efficacy of an intravenous placebo controlled randomised infusion of ularitide in a prospective double-blind study in patients with symptomatic, decompensated chronic heart failure. Program and abstracts, European Society of Cardiology Congress 2005, September 3–7, Stockholm, Sweden. Hot line I: Heart failure/cardiac function.

  42. Missov E, Calzolari C. Elevated cardiac troponin I in some patients with severe congestive heart failure [abstract]. J Mol Cell Cardiol 1995;27:A-405.

    Google Scholar 

  43. Missov E, Calzolari C, Pau B. Circulating cardiac troponin I in severe congestive heart failure. Circulation 1997;96:2953–8.

    PubMed  CAS  Google Scholar 

  44. La Vecchia L, Mezzena G, Ometto R et al. Detectable serum troponin I in patients with heart failure nonmyocardial ischemic origin. Am J Cardiol 1997;80:88–90.

    PubMed  Google Scholar 

  45. Horwich T, Patel J, MacLellan R et al. Cardiac troponin I is associated with impaired hemodyamics, progressive left ventricular dysfunction, and increased mortality rates in advanced heart failure. Circulation 2003;108:833–8.

    PubMed  CAS  Google Scholar 

  46. Stanton EB, Hansen MS, Sole MJ et al. Cardiac troponin I, a possible predictor of survival in patients with satble congestive heart failure. Can J Cardiol 2005;21(1):39–43.

    PubMed  CAS  Google Scholar 

  47. Jeremias A, Gibson M. Narrative review: alternative causes for elevated cardiac troponin levels when acute coronary syndromes are excluded. Ann Intern Med 2005;142:786–92.

    PubMed  Google Scholar 

  48. Sato Y, Taniguchi R, Makiyama T et al. Measurements of serum cardiac troponin T and plasma brain natriuretic peptide in patients with severe cardiac decompensation. Heart 2002;88:647–8.

    PubMed  CAS  Google Scholar 

  49. Got T, Takase H, Toriyama T et al. Circulating concentrations of cardiac proteins indicate the severity of congestive herart failure. Heart 2003;89:1303–07.

    Google Scholar 

  50. Sugiura T, Takase H, Toriyama T et al. Circulating levels of myocardial proteins predict future deterioration of congestive heart failure. J Card Fail 2005;11(7):504–09.

    PubMed  CAS  Google Scholar 

  51. Chen L, Guo X, Yang F. Role of heart-type fatty acid binding protein in early detection of acute myocardial infarction in comparison with cTnI, CKMB and myoglobin. J Huazhong Univ Sci Technolo Med Sci 2004;24(5):449–51, 459.

    CAS  Google Scholar 

  52. Ishii J, Ozaki Y, Lu J et al. Prognostic value of serum concentration of heart-type fatty acid-binding protein relative to cardiac troponin T on admission in the early hours of acute coronary syndrome. Clin Chem 200551(8):1397–1404 (Epub June 10, 2005).

    PubMed  CAS  Google Scholar 

  53. Glatz JF, Kleine AH, van Nieuwenhoven FA et al. Fatty-acid-binding protein as a plasma marker for the estimation of myocardial infarct size in humans. Br Heart J 1994;71(2):135–40.

    PubMed  CAS  Google Scholar 

  54. Setsuta K, Seino Y, Ogawa T et al. Use of cytosolic and myofibril markers in the detection of ongoing myocardial damage in patients with chronic heart failure. Am J Med 2002;113(9):717–22.

    PubMed  CAS  Google Scholar 

  55. Arimoto T, Takeishi Y, Shiga R et al. Prognostic value of elevated circulating heart-type fatty acid binding protein in patients with congestive heart failure. J Card Fail 2005;11(1):56–60.

    PubMed  CAS  Google Scholar 

  56. Niizeki T, Takeishi Y, Arimoto T et al. Combination of heart-type fatty acid binding protein and brain natriuretic peptide can reliably risk stratify patients hospitalized for chronic heart failure. Circ J 2005;69(8):922–7.

    PubMed  CAS  Google Scholar 

  57. Niizeki T, Takeishi Y, Arimoto T et al. Serum heart-type fatty acid binding protein predicts cardiac events in elderly patients with chronic heart failure. J Cardiol 2005;46(1):9–15.

    PubMed  Google Scholar 

  58. Hansen MS, Stanton EB, Gawad Y et al. Relation of circulating cardiac myosin light chain 1 isoform in stable severe congestive heart failure to survival and treatment with flosequinan. Am J Cardiol 2002;90(9):969–73.

    PubMed  CAS  Google Scholar 

  59. Sackner-Bernstein JD. The myocardial matrix and the development and progression of ventricular remodeling. Curr Cardiol Rep 2000;2:112–9.

    PubMed  CAS  Google Scholar 

  60. Weber KT, Sun Y, Tyagi SC et al. Collagen network of the myocardium: function, structural remodeling and regulatory mechanisms. J Mol Cell Cardiol 1994;26:279–92.

    PubMed  CAS  Google Scholar 

  61. Spinale F. Matrix metalloproteinases [review]. Circ Res 2002;90:520.

    PubMed  CAS  Google Scholar 

  62. Inokubo Y, Handa H, Ishizaka H et al. Plasma levels of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 are increased in the coronary circulation in patients with acute coronary syndrome. Am Heart J 2001;141:211–7.

    PubMed  CAS  Google Scholar 

  63. Kai H, Ikeda H, Yasukawa H et al. Peripheral blood levels of matrix metalloproteinase-2 and metalloproteinase-9 are elevated in patients with acute coronary syndrome. J Am Coll Cardiol 1998;32:368–72.

    PubMed  CAS  Google Scholar 

  64. Thomas CV, Coker ML, Zellner JL et al. Increased matrix metalloproteinases activity and selective upregulation in LV myocardium from patients with end-stage dilated cardiomyopathy. Circulation 1998;97:1708–15.

    PubMed  CAS  Google Scholar 

  65. Blankenberg S, Rupprecht HJ, Poirier O et al. Plasma concentration and genetic variation of matrix metalloproteinase 9 and prognosis of patients with cardiovascular disease. Circulation 2003;107:1579–85.

    PubMed  CAS  Google Scholar 

  66. Sundstrom J, Evans J, Benjamin E et al. Relations of plasma matrix metalloproteinase-9 to clinical cardiovascular risk factors and echocardiographic left ventricular measures. Circulation 2004;109:2850–6.

    PubMed  Google Scholar 

  67. Banfi C, Cavalca V, Veglia F et al. Neurohormonal activation is associated with increased levels of plasma matrix metalloproteinase-2 in human heart failure. Eur Heart J 2005;26(5);481–8 (Epub December 17, 2004).

    PubMed  CAS  Google Scholar 

  68. Squire IB, Evans J, Ng LL et al. Plasma MMP-9 and MMP-2 following acute myocardial infarction in man: correlation with echocardiographic and neurohormonal parameters of left ventricular dysfunction. J Card Fail 2004;10(4):328–33.

    PubMed  CAS  Google Scholar 

  69. George J, Patal S, Wexler et al. Circulating matrix metalloproteinase-2 but not matrix metalloproteinase-3, matrix metalloproteinase-9, or tissue inhibitor of metalloproteinase-1 predicts outcome in patients with congestive heart failure. Am Heart J 2005;150(3):484–7.

    PubMed  CAS  Google Scholar 

  70. Lubos E, Schnabel R, Rupprecht H et al. Prognostic value of tissue inhibitor of metalloproteinase-1 for cardiovascular death among patients with cardiovascular disease: results from the AtheroGene study. Eur Heart J 2006;27(2):150–6.

    PubMed  CAS  Google Scholar 

  71. Spinale FG, Coker ML, Heung LJ et al. A matrix metalloproteinase induction/activation system exist in the human left ventricular myocardium and is upregulated in heart failure. Circulation 2000;102:1944–9.

    PubMed  CAS  Google Scholar 

  72. Torre-Amione G, Kapadia S, Benedict C et al. Proinflammatory cytokine levels in patients with depressed left ventricular ejection fraction: a report from the Studies of Left Ventricular Dysfunction (SOLVD). J Am Coll Cardiol 1996;27:1201–06.

    PubMed  CAS  Google Scholar 

  73. Aukrust P, Ueland T, Lien E et al. Cytokine network in congestive heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. Am J Cardiol 1999;83:376–82.

    PubMed  CAS  Google Scholar 

  74. Levine B, Kalman J, Mayer L et al. Elevated circulating levels of tumor necrosis factor in severe congestive heart failure. N Engl J Med 1990;323:236–41.

    PubMed  CAS  Google Scholar 

  75. Cicoira M, Bolger AP, Doechner W et al. High tumor necrosis factor-alpha levels are associated with the exercise intolerance and neurohormonal activation in chronic heart failure pa-tients. Cytokine 2001;15:80–6.

    PubMed  CAS  Google Scholar 

  76. Deswal A, Petersen NJ, Feldman AM et al. Cytokines and cytokine receptors in advanced heart failure: an analysis of the cytokine database from the vesnarinone trial (VEST). Circulation 2001;103:2055–9.

    PubMed  CAS  Google Scholar 

  77. Orus J, Roig E, Perez-Villa F et al. Prognostic value of serum cytokines in patients with congestive heart failure. J Heart Lung Transplant 2000;19(5):419–25.

    PubMed  CAS  Google Scholar 

  78. Gwechenberger M, Hulsman M, Berger R et al. Interleukin-6 and B-type natriuretic peptide are independent predictors for worsening of heart failure in patients with progressive conges-tive heart failure. J Heart Lung Transplant 2004;23(7):839–44.

    PubMed  Google Scholar 

  79. Kell R, Haunstetter A, Dengler TJ et al. Do cytokines enable risk stratification to be improved in NYHA functional class III patients? Comparison with other potential predictors of prognosis. Eur Heart J 2002;23(1):9–10.

    Google Scholar 

  80. Maeda K, Tsutamoto T, Wada A et al. High levels of plasma brain natriuretic peptide and interleukin-6 after optimized treatment for heart failure are independent risk factors for mor-bidity and mortality in patients with congestive heart failure. J Am Coll Cardiol 2000;36(5):1587–93.

    PubMed  CAS  Google Scholar 

  81. Raymond RJ, Dehmer GJ, Theoharides T et al. Elevated interleukin-6 levels in patients with asymptomatic left ventricular systolic dysfunction. Am Heart J 2001;141:435–8.

    PubMed  CAS  Google Scholar 

  82. Benedict Cr, Weiner DH, Johnstone DE et al. Comparative neurohormonal responses in patients with preserved and impaired left ventricular ejection fraction: results of the studies of the left ventricular dysfunction (SOLVD) registry. J Am Coll Cardiol 1993;22:146A–153A.

    PubMed  CAS  Google Scholar 

  83. Vasan RS, Sullivan LM, Roubenoff R et al. Inflammatory markers and risk of heart failure in elderly subjects without prior myocardial infarction: the Framingham Heart Study. Circulation 2003;107:1486–91.

    PubMed  CAS  Google Scholar 

  84. Yin WH, Chen JW, Jen HL et al. The prognostic value of circulating soluble cell adhesion molecules in patients with chronic congestive heart failure. Eur J Heart Fail 2003;5(4):507–16.

    PubMed  CAS  Google Scholar 

  85. Kameda K, Matsunaga T, Abe N et al. Correlation of oxidative stress with activity of matrix metalloproteinase in patients with coronary artery disease: possible role for ventricular remodeling. Eur Heart J 2003;24:2180–5.

    PubMed  CAS  Google Scholar 

  86. Hokamaki J, Kawano H, Yoshimura M et al. Urinary biopyrrins levels are elevated in relation to severity of heart failure. J Am Coll Cardiol 2004;43:1880–5.

    PubMed  CAS  Google Scholar 

  87. Nokaka-Sarukawa M, Yamamoto K, Aoki H et al. Increase urinary 15-F2t-isoprostane concen-trations in patients with non-ischemic congestive heart failure: a marker of oxidative stress. Heart 2003;89(8):871–4.

    Google Scholar 

  88. Wykretowicz A, Furmaniuk J, Smielecki J et al. The oxygen stress index and levels of circula-ting interleukin-10 and interleukin-6 in patients with chronic heart failure. Int J Cardiol 2004; 94(2–3):283–7.

    PubMed  Google Scholar 

  89. Ghatak A, Brar MJ, Agarwal A et al. Oxy free radical system in heart failure and therapeuticrole of oral vitamin E. Int J Cardiol 1996;57(2):119.

    PubMed  CAS  Google Scholar 

  90. Keith M, Geranmayegan A, Sole MJ et al. Increased oxidative stress in patients with conges-tive heart failure. J Am Coll Cardiol 1998;31(6):1352.

    PubMed  CAS  Google Scholar 

  91. Tingberg E, Ohlin AK, Gottsater A, Ohlin H. Lipid peroxidation is not increased in heart failure patients on modern pharmacological therapy. Int J Cardiol 2005 [Epub ahead of print].

  92. Jortani SA, Valdes R. Digoxin and related endogenous factors. Crit Rev Clin Lab Sci 1996;34:225–74.

    Google Scholar 

  93. Balzan S, Neglia D, Ghione S et al. Increased circulating levels of ouabain-like factor in patients with asymptomatic left ventriculart dysfunction. Eur J Heart Fail 2001;3:165–71.

    PubMed  CAS  Google Scholar 

  94. Nagele H, Bahlo M, Klapdor R et al. CA 125 in its relation to cardiac function. Am Heart J 1999;137:1044–9.

    PubMed  CAS  Google Scholar 

  95. Duman C, Ercan E, Tengiz I et al. Elevated serum CA 125 in mitra; stenotic patients with heart failure. Cardiology 2003;100(1):7–10.

    PubMed  CAS  Google Scholar 

  96. Faggiano P, D’aloia A, Brenatana L et al. Serum levels of different tumour markers in patients with chronic heart failure. Eur J Heart Fail 2005;7(1):57–61.

    PubMed  CAS  Google Scholar 

  97. Varol E, Ozaydin M, Dogan A et al. Tumour marker levels in patients with chronic heart failure. Eur J Heart Fail 2005;7(5):840–3.

    PubMed  CAS  Google Scholar 

  98. D’Aloia A, Faggiano P, Aurigemma G et al. Serum levels of carbohydrate antigen 125 in patients with chronic heart failure. J Am Coll Cardiol 2003;41:1805–11.

    PubMed  CAS  Google Scholar 

  99. Kouris NT, Zacharos ID, Kontogianni DD et al. The significance of CA 125 levels in patients with chronic congestive heart failure. Correlation with clinical and echocardiographic parameters. Eur J Heart Fail 2005;7(2):199–203.

    PubMed  CAS  Google Scholar 

  100. Kubonishi I, Bandobaschi K, Murata N et al. High serum levels of CA125 and interleukin-6 in a patient with Ki-1 lymphoma. Br J Haematol 1997;98:450–2.

    PubMed  CAS  Google Scholar 

  101. Kosar F, Aksoy Y, Ozguntekin G et al. Relationship between cytokines and tumour markers in patients with chronic heart failure. Eur J Heart Fail 2005 [Epub ahead of print].

  102. Ng LL, Loke IW, O’Brien RJ et al. Plasma urocortin in human systolic heart failure. Clin Sci (Lond) 2004;106(4):383–8.

    CAS  Google Scholar 

  103. Jougasaki M, Wei CM, McKinley LJ et al. Elevation of circulating and ventricular adrenomedullin in human congestive heart failure. Circulation 1995;92(3):286–9.

    PubMed  CAS  Google Scholar 

  104. Nishikimi T, Saito Y, Kitamura K et al. Increased plasma lebvels of adrenomedullin in patients with heart failure. J Am Coll Cardiol 1995;26:1424–31.

    PubMed  CAS  Google Scholar 

  105. Kato J, Kobayashi K, Etoh T et al. Plasma adrenomedullin concentration in patients with heart failure. J Clin Endocrinol Metab 1996;81(1):180–3.

    PubMed  CAS  Google Scholar 

  106. Nagaya N, Nishikimi T, Uematsu M et al. Plasma adrenomedullin as an indicator of prognosis after acute myocardial infarction. Heart 1999;81:483–7.

    PubMed  CAS  Google Scholar 

  107. Pousset F, Masson F, Chavirovskaia O et al. Plasma adrenomedullin, a new independent predictor of prognosis in patients with chronic heart failure. Eur Heart J 2000;21:1009–14.

    PubMed  CAS  Google Scholar 

  108. Richards A, Doughty R, Nicholls G et al. Plasma n-terminal pro-brain natriuretic peptide and adrenomedullin. J Am Coll Cardiol 2001;37:1781–7.

    PubMed  CAS  Google Scholar 

  109. Talwar S, Downie PF, Squire IB et al. An immunoluminometric assay for cardiotrophin-1: a new identified cytokine is present in normal human plasma and is increased in heart failure. Biochem Biophys Res Commun 1999;261:567–71.

    PubMed  CAS  Google Scholar 

  110. Talwar, Squire IB, O’Brien RJ et al. Plasma cardiotrophin-1 following acute myocardial infarction: relationship with left ventricular systolic dysfunction. Clin Sci (Lond) 2002;102(1):9–14.

    CAS  Google Scholar 

  111. Tsutsamoto T, Wada A, Maeda K et al. Relationship between plasma level of cardiotrophin-1 and left ventricular mass index in patients with dilated cardiomyopathy. J Am Coll Cardiol 2001;38:1485–90.

    Google Scholar 

  112. Talwar, Squire IB, Downie PF et al. Elevated circulating cardiotrophin-1 in heart failure: relationship with parameters of left ventricular systolic dysfunction. Clin Sci (Lond) 2000;99(1):83–8.

    CAS  Google Scholar 

  113. Ferrari R, Bachetti T, Confortini R et al. Tumor necrosis factor soluble receptors in patients with various degrees of congestive heart failure. Circulation 1995;92(6):1479–86.

    PubMed  CAS  Google Scholar 

  114. Nowak J, Rozentrt P, Szewczyk M et al. Tumor necrosis factor receptors sTNF-RI and sTNF-RII in advanced chronic heart failure. Pol Arch Med Wewn 2002;107(3):223–9.

    PubMed  CAS  Google Scholar 

  115. Nozaki N, Yamaguchi S, Shirakabe M et al. Soluble tumor necrosis factor receptors are elevated in relation to severity of congestive heart failure. Jpn Circ J 1997;61:657–64.

    PubMed  CAS  Google Scholar 

  116. Rauchhaus M, Doehner W, Francis D et al. Plasma cytokine parameters and mortality in patients with chronic heart failure. Circulation 2000;102:3060–7.

    PubMed  CAS  Google Scholar 

  117. Hillege HL, Nitscd D, Pefeffer MA et al. Renal function as a predictor of outcome in a broad spectrum of patients with heart failure. Circulation 2006;113:671–8.

    PubMed  Google Scholar 

  118. Smith GL, Lichtman JH, Bracken MD et al. Renal impairment and outcomes in heart failure: systematic review and meta-analysis. J Am Coll Cardiol 2006;47(10):1987–96.

    PubMed  Google Scholar 

  119. Coll E, Botey A, Alvarez L et al. Serum cystatin C as a new marker for noninvasive estimation of glomerular filtration rate and as a marker for early renal impairment. Am J Kidney Dis 2000;36:29–34.

    PubMed  CAS  Google Scholar 

  120. Sarnak M, Katz R, Stehman-Breen C et al. Cystatin C concentration as a risk factor for heart failure in older adults. Ann Intern Med 2005;142:497–505.

    PubMed  CAS  Google Scholar 

  121. Luc G, Bard JM, Lesueur C et al. Plasma cystatin-C and development of coronary heart disease: the PRIME Study. Atherosclerosis 2006;185(2):375–80.

    PubMed  CAS  Google Scholar 

  122. Shlipak MG, Katz R, Fried LF et al. Cystatin-C and mortality in elderly persons with heart failure. J Am Coll Cardiol 2005;45(2):268–71.

    PubMed  CAS  Google Scholar 

  123. Arimoto T, Takeishi Y, Niizeki T et al. Cystatin C, a novel measure of renal function, is an independent predictor of cardiac events in patients with heart failure. J Card Fail 2005;11(8):595–601.

    PubMed  CAS  Google Scholar 

  124. Lip G, Blann A. von Willebrand factor: A marker of endothelial dysfunction in vascular disorders? Cardiovasc Res 1997;34:255–65.

    PubMed  CAS  Google Scholar 

  125. Blann AD, McCollum CN. von Willebrand factor and soluble thrombomodulin as predictors of adverse events among subjects with peripheral or coronary atherosclerosis. Blood Coagul Fibrinolysis 1999;10:375–80.

    PubMed  CAS  Google Scholar 

  126. Lip GY, Lowe GD, Metcalfe MJ et al. Effects of warfarin therapy on plasma fibrinogen, von Willebrand factor, and fibrin D-dimer in left ventricular dysfunction secondary to coronary artery disease with and without aneurysms. Am J Cardiol 1995;76:453–8.

    PubMed  CAS  Google Scholar 

  127. Chong AY, Freestone B, Patel J et al. Endothelial activation, dysfunction, and damage in congestive heart failure and the relation to brain natriuretic peptide and outcomes. Am J Cardiol 2006;97(5):671–5.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David R. Buvat de Virginy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Virginy, D.R.B. Novel and potential future biomarkers for assessment of the severity and prognosis of chronic heart failure. Heart Fail Rev 11, 333–334 (2006). https://doi.org/10.1007/s10741-006-0234-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-006-0234-x

Keywords

Navigation