Skip to main content
Log in

Queueing network model for obstetric patient flow in a hospital

  • Published:
Health Care Management Science Aims and scope Submit manuscript

Abstract

A queueing network is used to model the flow of patients in a hospital using the observed admission rate of patients and the histogram for the length of stay for patients in each ward. A complete log of orders for every movement of all patients from room to room covering two years was provided to us by the Medical Information Department of the University of Tsukuba Hospital in Japan. We focused on obstetric patients, who are generally hospitalized at random times throughout the year, and we analyzed the patient flow probabilistically. On admission, each obstetric patient is assigned to a bed in one of the two wards: one for normal delivery and the other for high-risk delivery. Then, the patient may be transferred between the two wards before discharge. We confirm Little’s law of queueing theory for the patient flow in each ward. Next, we propose a new network model of M/G/ and M/M/ m queues to represent the flow of these patients, which is used to predict the probability distribution for the number of patients staying in each ward at the nightly census time. Although our model is a very rough and simplistic approximation of the real patient flow, the predicted probability distribution shows good agreement with the observed data. The proposed method can be used for capacity planning of hospital wards to predict future patient load in each ward.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Asaduzzaman M, Chaussalet TH, Robertson NJ (2010) A loss network model with overflow for capacity planning of a neonatal unit. Ann Oper Res 178(1):67–76

    Article  Google Scholar 

  2. Barnes S, Golden B, Price S (2013) Applications of agent-based modeling and simulation to healthcare operations management. In: Denton BT (ed) Handbook of healthcare operations management: methods and applications. Springer, pp 45–74

  3. Burke PJ (1956) The output of a queuing system. Oper Res 4(6):699–704

    Article  Google Scholar 

  4. Cohen MA, Hershey JC, Weiss EN (1980) Analysis of capacity decisions for progressive patient care hospital facilities. Health Serv Res 15:145–160

    Google Scholar 

  5. Côté MJ, Stein WE (2007) A stochastic model for a visit to the doctor’s office. Math Comput Model 45:309–323

    Article  Google Scholar 

  6. Green L (2004) Capacity planning and management in hospitals. In: Brandeau ML, Sainfort F, Pierskalla WP (eds) Operations research and health care: a handbook of methods and applications. Kluwer, pp 15–41

  7. Green L (2006) Queueing analysis in healthcare. In: Hall RW (ed) Patient flow: reducing delay in healthcare delivery. Springer, pp 281–307

  8. Griffin J, Xia S, Peng S, Keskinocak P (2012) Improving patient flow in an obstetric unit. Health Care Manag Sci 15(1):1–14

    Article  Google Scholar 

  9. Gross D, Shortle JF, Thompson JM, Harris CM (2008) Fundamentals of queueing theory, 4th Edn. Wiley

  10. Gupta D (2013) Queueing models for healthcare operations. In: Denton BT (ed) Handbook of healthcare operations management: methods and applications. Springer, pp 19–44

  11. Hall RW (1991) Queueing methods: for services and manufacturing. Prentice-Hall

  12. Hershey JC, Weiss EN, Cohen MA (1981) A stochastic service network model with application to hospital facilities. Oper Res 29(1):1–22

    Article  Google Scholar 

  13. Kao EPC (1974) Modeling the movement of coronary patients within a hospital by semi-Markov processes. Oper Res 22(4):683–699

    Article  Google Scholar 

  14. Kim S-H, Whitt W (2014) Are call center and hospital arrivals well modeled by nonhomogeneous Poisson processes?. Manufacturing & Service Operations Management 16(3):464–480

    Article  Google Scholar 

  15. Koizumi N, Kuno E, Smith TE (2005) Modeling patient flows using queuing network with blocking. Health Care Manag Sci 8(1):49–60

    Article  Google Scholar 

  16. Litvak N, van Rijsbergen M, Boucherie RJ, van Houdenhoven M (2008) Managing the overflow of intensive care patients. Eur J Oper Res 185(3):998–1010

    Article  Google Scholar 

  17. Lovejoy WS, Desmond JS (2011) Little’s law flow analysis of observation unit impact and sizing. Acad Emerg Med 18(2):183–189

    Article  Google Scholar 

  18. Mirasol NM (1963) The output of an M/G/ queuing system is Poisson. Oper Res 11(2):282–284

    Article  Google Scholar 

  19. Misue K, Kanai Y, Takagi H (2013) Visualizing the overview of temporal patterns of patients’ activities, 2013 Workshop on Visual Analytics in Healthcare (VAHC 2013), pp. 11–14, Washington D. C., November 16. http://www.visualanalyticshealthcare.org/docs/VAHC2013_proceedings/LowRes.pdf

  20. Palvannan RK, Teow KL (2012) Queueing for healthcare. J Med Syst 36(2):541–547

    Article  Google Scholar 

  21. Takagi H (2014) From computer science to service science: queues with human customers and servers. Comput Netw 66:102–111. Leonard Kleinrock Tribute Issue: A Collection of Papers by his Students

    Article  Google Scholar 

  22. Takagi H, Kanai Y, Misue K (2014) Queuing network model and visualization for the patient flow in the obstetric unit of the University of Tsukuba Hospital, 2014 SRII Global Conference, April 23–25, 2014, San Jose, California. IEEE Proceedings, pp. 147–156, 978-1-4799-5193-2/14. http://www.computer.org/csdl/proceedings/srii/2014/5193/00/5193a147.pdf

  23. Takagi H, Kurata H, Okada Y, Shigeno M , Yamashita K, Yoshise A, Zhang Y (2012) Progress in the healthcare service innovation project at the Tsukuba University Hospital, 2012 Annual SRII Global Conference, July 24–27, 2012, San Jose, California. IEEE Proceedings, pp. 667–671, 978-1-4673-2318-5. doi:10.1109/SRII.2012.80

  24. University of Tsukuba Hospital Outline (2014). http://www.s.hosp.tsukuba.ac.jp/outline/pdf/gaiyou.pdf

  25. Weiss EN, Cohen MA, Hershey JC (1982) An iterative estimation and validation procedure for specification of semi-Markov models with application to hospital patient flow. Oper Res 30(6):1082–1104

    Article  Google Scholar 

  26. Weiss EN, McClain JO (1987) Administrative days in acute care facilities: a queueing-analytic approach. Oper Res 35(1):35–44

    Article  Google Scholar 

  27. Xie H, Chaussalet T, Rees M (2007) A semi-open queueing network approach to the analysis of patient flow in healthcare systems, Twelfth IEEE International Symposium on Computer-Based Medical Systems (CBMS ’07), pp 719–724, Maribor, Slovenia, June 20–22

  28. Yankovic N, Green LV (2011) Identifying good nursing levels: a queuing approach. Oper Res 59(4):942–955

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the following staff of the University of Tsukuba Hospital: Dr. Tetsuya Igarashi, the then Director, Dr. Hiromi Hamada and Dr. Tsuyoshi Ogura of the Obstetrics and Gynecology Section, Dr. Hiroyuki Hoshimoto of the Medical Information and Medical Records, and Mr. Masaki Suzuki of the Head Division of Accounting and Management.

The first author also appreciates the valuable comments on the draft of the manuscript by Associate Professor Brian T. Denton of the University of Michigan, Ann Arbor, Professor Margaret L. Brandeau of Stanford University, and Professor Pinar Keskinocak of Georgia Institute of Technology.

The authors thank two reviewers of the original manuscript for their valuable and constructive comments, which were very helpful in revising the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideaki Takagi.

Additional information

This work is partially supported by the Grant-in-Aid for Scientific Research (A) No. 23241047 from the Japan Society for the Promotion of Science (JSPS) during the fiscal years 2011–2013.

Appendix: Relevant queueing models

Appendix: Relevant queueing models

The following queueing models are relatively simple and robust, and the explicit formulas are available for the probability distribution of the number of customers present in the system.

  1. (1)

    M/G/

    A model denoted by M/G/ in Kendall’s notation of queueing theory is simply a system with sufficiently many servers to which customers arrive in a Poisson process and spend a random amount of service time, which is generally distributed probabilistically [9, p.84], [11, p.145]. There is no contention for servers among customers. If λ denotes the arrival rate and b denotes the mean service time, the number N of customers present in the system at an arbitrary time has a Poisson distribution with mean ρ: = λ b:

    $$ P \{ N = k \} = \frac{{ \rho^{k} }}{{ k! }} e^{- \rho} \qquad k \ge 0 . $$
    (27)

    Note that this distribution depends on the service time only through its mean value.

    A useful property in modeling is that the output of an M/G/ system is a Poisson process [18]. A nice property about the Poisson process is that the superposition of independent Poisson processes forms another Poisson process with added rates. These properties contribute to building a simple and robust model.

  2. (2)

    M/M/ m

    A model denoted by M/M/ m in Kendall’s notation is a queueing system with m servers and a waiting room of infinite capacity to which customers arrive in a Poisson process at rate λ each with the service time exponentially distributed with mean 1/μ [9, p.66], [11, p.142]. Then, the probability distribution for the number N of the customers present in the system at an arbitrary time in the steady state is given by

    $$ P \{ N = k \} = \left\{\begin{array}{ll} P_{0} (m , \rho ) \frac{{ \rho^{k} }}{{ k! }} & \quad 0 \le k \le m , \\ P_{0} (m , \rho ) \frac{{ m^{m} }}{{ m! }} \left( \frac{ \rho}{m } \right)^{k} & \quad k \ge m + 1 , \end{array}\right. $$
    (28)

    where ρ: = λ/μ and

    $$ \frac{1}{{ P_{0} (m , \rho ) }} = \sum\limits_{k=0}^{m-1} \frac{{ \rho^{k} }}{{ k! }} + \frac{{ \rho^{m} }}{{ (m - 1 )! (m - \rho ) }} . $$
    (29)

    The output of an M/M/ m system is also a Poisson process [3].

    Each customer in the system is either waiting in the waiting room or being served. The probability distribution and the mean for the number L of customers in the waiting room are given by

    $$\begin{array}{@{}rcl@{}} P \{ L = k \} &=& P \{ N = m + k \} \\ &=& \left\{\begin{array}{ll} 1 - \frac{ \rho}{m } C (m , \rho ) & k = 0 , \\ C (m , \rho ) \left( 1 - \frac{ \rho}{m } \right) \left( \frac{ \rho}{m } \right)^{k} & k \ge 1, \end{array}\right. \\ E [ L ] &=& \frac{{ \rho C (m , \rho ) }}{{ m - \rho }} , \end{array} $$
    (30)

    where the Erlang’s C formula [9, p.70]

    $$ C (m , \rho ) := \frac{{ \frac{{ \rho^{m} }}{{ m! }} }}{{ \left( 1 - \frac{ \rho}{m } \right) \sum\limits_{k=0}^{m-1} \frac{{ \rho^{k} }}{{ k ! }} + \frac{{ \rho^{m} }}{{ m ! }} }} $$
    (31)

    gives the probability that an arriving customer waits because all servers are busy.

    The probability distribution and the mean for the waiting time (the time that a customer spends in the waiting room) W in the M/M/ m queue are given by

    $$\begin{array}{@{}rcl@{}} P \{ W = 0 \} &=& 1 - C (m , \rho ) , \\ P \{ W < t \} &=& 1 - C (m , \rho ) e^{- (m - \rho ) \mu t } \qquad t > 0 , \\ E [ W ] &=& \frac{{ C (m , \rho ) }}{{ \mu (m - \rho ) }} . \end{array} $$
    (32)

    We note that the relation E[L] = λ E[W] is an example of Little’s law in Eq. 12.

    The probability distribution and the mean for the number S of customers in service are given by

    $$\begin{array}{@{}rcl@{}} P \{ S = k \} &=& \left\{\begin{array}{ll} P \{ N = k \} & 0 \le k \le m - 1 \\ P \{ N \ge m \} & k = m , \end{array}\right. \\ &=& \left\{\begin{array}{ll} P_{0} (m , \rho ) {{ \rho^{k} } \over { k! }} & 0 \le k \le m - 1 \\ C (m , \rho ) & k = m , \end{array}\right. \\ E [ S ] &=& \rho , \end{array} $$
    (33)

    where P 0(m,ρ) and C(m,ρ) are given in Eqs. 29 and 31, respectively.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takagi, H., Kanai, Y. & Misue, K. Queueing network model for obstetric patient flow in a hospital. Health Care Manag Sci 20, 433–451 (2017). https://doi.org/10.1007/s10729-016-9363-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10729-016-9363-5

Keywords

Navigation