Skip to main content

Advertisement

Log in

HIV epidemic control—a model for optimal allocation of prevention and treatment resources

  • Published:
Health Care Management Science Aims and scope Submit manuscript

Abstract

With 33 million people living with human immunodeficiency virus (HIV) worldwide and 2.7 million new infections occurring annually, additional HIV prevention and treatment efforts are urgently needed. However, available resources for HIV control are limited and must be used efficiently to minimize the future spread of the epidemic. We develop a model to determine the appropriate resource allocation between expanded HIV prevention and treatment services. We create an epidemic model that incorporates multiple key populations with different transmission modes, as well as production functions that relate investment in prevention and treatment programs to changes in transmission and treatment rates. The goal is to allocate resources to minimize R 0, the reproductive rate of infection. We first develop a single-population model and determine the optimal resource allocation between HIV prevention and treatment. We extend the analysis to multiple independent populations, with resource allocation among interventions and populations. We then include the effects of HIV transmission between key populations. We apply our model to examine HIV epidemic control in two different settings, Uganda and Russia. As part of these applications, we develop a novel approach for estimating empirical HIV program production functions. Our study provides insights into the important question of resource allocation for a country’s optimal response to its HIV epidemic and provides a practical approach for decision makers. Better decisions about allocating limited HIV resources can improve response to the epidemic and increase access to HIV prevention and treatment services for millions of people worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Joint United Nations Programme on HIV/AIDS (UNAIDS) and World Health Organization (WHO) (2010) UNAIDS report on the global AIDS epidemic 2010. http://www.unaids.org/globalreport/documents/20101123_GlobalReport_full_en.pdf

  2. Joint United Nations Programme on HIV/AIDS (UNAIDS) (2009) What countries need: Investments needed for 2010 targets. http://data.unaids.org/pub/Report/2009/jc1681_what_countries_need_en.pdf

  3. Joint United Nations Programme on HIV/AIDS (UNAIDS) (2011) UNAIDS World AIDS Day report. How to get to zero: Faster. Smarter. Better. http://www.unaids.org/en/media/unaids/contentassets/documents/unaidspublication/2011/jc2216_worldaidsday_report_2011_en.pdf

  4. Joint United Nations Programme on HIV/AIDS (UNAIDS) (2010) Outlook report 2010. http://data.unaids.org/pub/Report/2009/JC1796_Outlook_en.pdf

  5. Mathers BM, Degenhardt L, Ali H, Wiessing L, Hickman M, Mattick RP, Myers B, Ambekar A, Strathdee SA (2009) Reference Group to the UN on HIV and Injecting Drug Use (2010) HIV prevention, treatment, and care services for people who inject drugs: a systematic review of global, regional, and national coverage. Lancet 375(9719):1014–1028

    Article  Google Scholar 

  6. Joint United Nations Programme on HIV/AIDS (UNAIDS) (2005) Resource needs for an expanded response to AIDS in low- and middle-income countries. http://data.unaids.org/pub/Report/2005/jc1255_resource_needs_en.pdf

  7. Bertozzi SM, Laga M, Bautista-Arredondo S, Coutinho A (2008) Making HIV prevention programmes work. Lancet 372(9641):831–844

    Article  Google Scholar 

  8. Hogan DR, Baltussen R, Hayashi C, Lauer JA, Salomon JA (2005) Cost effectiveness analysis of strategies to combat HIV/AIDS in developing countries. BMJ 331(7530):1431–1437

    Article  Google Scholar 

  9. Horton R, Das P (2008) Putting prevention at the forefront of HIV/AIDS. Lancet 372(9637):421–422

    Article  Google Scholar 

  10. Piot P, Bartos M, Larson H, Zewdie D, Mane P (2008) Coming to terms with complexity: a call to action for HIV prevention. Lancet 372(9641):845–859

    Article  Google Scholar 

  11. Dandona L, Sisodia P, Kumar SP, Ramesh Y, Kumar AA, Rao MC, Marseille E, Someshwar M, Marshall N, Kahn J (2005) HIV prevention programmes for female sex workers in Andhra Pradesh, India: outputs, cost and efficiency. BMC Publ Health 5(1):98

    Article  Google Scholar 

  12. Dandona L, Kumar SP, Ramesh Y, Rao MC, Kumar AA, Marseille E, Kahn JG, Dandona R (2008) Changing cost of HIV interventions in the context of scaling-up in India. AIDS 22(Suppl 1):S43–S49

    Article  Google Scholar 

  13. Guinness L, Kumaranayake L, Hanson K (2007) A cost function for HIV prevention services: is there a ‘u’—shape? Cost Eff Resour Alloc 5(1):13

    Article  Google Scholar 

  14. Kaplan EH (1995) Economic analysis of needle exchange. AIDS 9(10):1113–1120

    Article  Google Scholar 

  15. Kaplan EH (1998) Economic evaluation and HIV prevention community planning: a policy analyst’s perspective. In: Holtgrave DR (ed) Handbook of economic evaluation of HIV prevention programs. Plenum Press

  16. Brandeau ML, Zaric GS, Richter A (2003) Resource allocation for control of infectious diseases in multiple independent populations: beyond cost-effectiveness analysis. J Health Econ 22(4):575–598

    Article  Google Scholar 

  17. Zaric GS, Brandeau ML (2001) Resource allocation for epidemic control over short time horizons. Math Biosci 171(1):33–58

    Article  Google Scholar 

  18. Zaric GS, Brandeau ML (2001) Optimal investment in a portfolio of HIV prevention programs. Med Decis Making 21(5):391–408

    Article  Google Scholar 

  19. Zaric GS, Brandeau ML (2002) Dynamic resource allocation for epidemic control in multiple populations. IMA J Math Appl Med Biol 19(4):235–255

    Article  Google Scholar 

  20. Alistar SS, Owens DK, Brandeau ML (2011) Effectiveness and cost effectiveness of expanding harm reduction and antiretroviral therapy in a mixed HIV epidemic: a modeling analysis for Ukraine. PLoS Med 8(3):e1000423

    Article  Google Scholar 

  21. Lasry A, Sansom SL, Hicks KA, Uzunangelov V (2012) Allocating HIV prevention funds in the United States: recommendations from an optimization model. PLoS One 7(6):e37545

    Article  Google Scholar 

  22. Long EF, Brandeau ML, Owens DK (2010) The cost-effectiveness and population outcomes of expanded HIV screening and antiretroviral treatment in the United States. Ann Intern Med 153(12):778–789

    Article  Google Scholar 

  23. Long EF, Stavert RR (2013) Portfolios of biomedical HIV interventions in South Africa: a cost-effectiveness analysis. J Gen Intern Med In press

  24. Robinson NJ, Mulder DW, Auvert B, Hayes RJ (1995) Modelling the impact of alternative HIV intervention strategies in rural Uganda. AIDS 9(11):1263–1270

    Article  Google Scholar 

  25. Alistar SS, Brandeau ML (2012) Decision making for HIV prevention and treatment scale up. Med Decis Making 32(1):105–117

    Article  Google Scholar 

  26. Anderson RM, May RM (1991) Infectious diseases of humans: dynamics and control. Oxford University Press

  27. Diekmann O, Heesterbeek JA, Metz JA (1990) On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations. J Math Biol 28(4):365–382

    Article  Google Scholar 

  28. van den Driessche P, Watmough J (2002) Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math Biosci 180(1–2):29–48

    Article  Google Scholar 

  29. Hethcote HW (2000) The mathematics of infectious diseases. SIAM Rev 42(4):599–653

    Article  Google Scholar 

  30. Longini IM, Nizam A, Xu S, Ungchusak K, Hanshaoworakul W, Cummings DA, Halloran ME (2005) Containing pandemic influenza at the source. Science 309(5737):1083–1087

    Article  Google Scholar 

  31. Ferguson NM, Cummings DA, Cauchemez S, Fraser C, Riley S, Meeyai A, Iamsirithaworn S, Burke DS (2005) Strategies for containing an emerging influenza pandemic in Southeast Asia. Nature 437(7056):209–214

    Article  Google Scholar 

  32. Joint United Nations Programme on HIV/AIDS (UNAIDS) (2010) Getting to zero: 2011–2015 strategy. http://www.unaids.org/en/media/unaids/contentassets/documents/unaidspublication/2010/JC2034_UNAIDS_Strategy_en.pdf

  33. President’s Emergency Fund for AIDS Relief (PEPFAR) (2012) PEPFAR blueprint: creating an AIDS-free generation. http://www.pepfar.gov/documents/organization/201386.pdf

  34. Brandeau ML, Zaric GS, De Angelis V (2005) Improved allocation of HIV prevention resources: using information about prevention program production functions. Health Care Manag Sci 8(1):19–28

    Article  Google Scholar 

  35. Marseille E, Dandona L, Marshall N, Gaist P, Bautista-Arredondo S, Rollins B, Bertozzi S, Coovadia J, Saba J, Lioznov D, Du Plessis J-A, Krupitsky E, Stanley N, Over M, Peryshkina A, Kumar SP, Muyingo S, Pitter C, Lundberg M, Kahn J (2007) HIV prevention costs and program scale: data from the PANCEA project in five low and middle-income countries. BMC Health Serv Res 7(1):108

    Article  Google Scholar 

  36. Richter A, Brandeau ML, Owens DK (1999) An analysis of optimal resource allocation for prevention of infection with human immunodeficiency virus (HIV) in injection drug users and non-users. Med Decis Making 19(2):167–179

    Article  Google Scholar 

  37. Brandeau ML, Zaric GS (2009) Optimal investment in HIV prevention programs: more is not always better. Health Care Manag Sci 12(1):27–37

    Article  Google Scholar 

  38. Granich RM, Gilks CF, Dye C, De Cock KM, Williams BG (2009) Universal voluntary HIV testing with immediate antiretroviral therapy as a strategy for elimination of HIV transmission: a mathematical model. Lancet 373(9657):48–57

    Article  Google Scholar 

  39. Lima VD, Johnston K, Hogg RS, Levy AR, Harrigan PR, Anema A, Montaner JS (2008) Expanded access to highly active antiretroviral therapy: a potentially powerful strategy to curb the growth of the HIV epidemic. J Infect Dis 198(1):59–67

    Article  Google Scholar 

  40. Long EF, Brandeau ML, Galvin CM, Vinichenko T, Tole SP, Schwartz A, Sanders GD, Owens DK (2006) Effectiveness and cost-effectiveness of strategies to expand antiretroviral therapy in St. Petersburg, Russia. AIDS 20(17):2207–2215

    Article  Google Scholar 

  41. Vijayaraghavan A, Efrusy MB, Mazonson PD, Ebrahim O, Sanne IM, Santas CC (2007) Cost-effectiveness of alternative strategies for initiating and monitoring highly active antiretroviral therapy in the developing world. J Acquir Immune Defic Syndr 46(1):91–100

    Google Scholar 

  42. Zaric GS, Barnett PG, Brandeau ML (2000) HIV transmission and the cost-effectiveness of methadone maintenance. Am J Public Health 90(7):1100–1111

    Article  Google Scholar 

  43. Zaric GS, Brandeau ML, Barnett PG (2000) Methadone maintenance and HIV prevention: a cost-effectiveness analysis. Manag Sci 46(8):1013–1031

    Article  Google Scholar 

  44. Joint United Nations Programme on HIV/AIDS (UNAIDS) (2008) Epidemiological fact sheet on HIV and AIDS: Uganda 2008 update. http://apps.who.int/globalatlas/predefinedReports/EFS2008/full/EFS2008_UG.pdf

  45. United States Agency for International Development (USAID) (2002) What happened in Uganda? Declining HIV prevalence, behavior change, and the national response. http://www.usaid.gov/our_work/global_health/aids/Countries/africa/uganda_report.pdf

  46. Government of Uganda (2010) United Nations General Assembly Special Session (UNGASS) Country Progress Report, Uganda: January 2008–December 2009. http://data.unaids.org/pub/Report/2010/uganda_2010_country_progress_report_en.pdf

  47. Altman LK (2005) U.S. blamed for condom shortage in fighting AIDS in Uganda. NY Times, Aug 30

  48. Anonymous (2010) Uganda: Public irritated by yet another condom shortage. PlusNews, UN Office for the Coordination of Humanitarian Affairs. http://www.plusnews.org/Report.aspx?ReportId=89667

  49. Joint United Nations Programme on HIV/AIDS (UNAIDS) (2008) AIDS spending by categories and financing sources: Uganda. http://data.unaids.org/pub/report/2008/rt08_UGA_en.pdf

  50. Hamers FF, Downs AM (2003) HIV in central and eastern Europe. Lancet 361(9362):1035–1044

    Article  Google Scholar 

  51. Kelly JA, Amirkhanian YA (2003) The newest epidemic: a review of HIV/AIDS in Central and Eastern Europe. Int J STD AIDS 14(6):361–371

    Article  Google Scholar 

  52. Twigg J (2007) HIV/AIDS in Russia: commitment, resources, momentum, challenges. http://csis.org/files/media/csis/pubs/071016_russiahivaids.pdf

  53. Joint United Nations Programme on HIV/AIDS (UNAIDS) (2007) Practical guidelines for intensifying HIV prevention: Towards universal access. http://data.unaids.org/pub/Manual/2007/20070306_prevention_guidelines_towards_universal_access_en.pdf

  54. Joint United Nations Programme on HIV/AIDS (UNAIDS) (2006) Country progress report of the Russian Federation on the implementation of the Declaration of Commitment on HIV/AIDS. Reporting period: January–December 2005. http://data.unaids.org/pub/Report/2006/2006_country_progress_report_russianfederation_en.pdf

  55. Luo RF, Cofrancesco JJ (2006) Injection drug use and HIV transmission in Russia. AIDS 20(6):935–936

    Article  Google Scholar 

  56. Mathers BM, Degenhardt L, Phillips B, Wiessing L, Hickman M, Strathdee SA, Wodak A, Panda S, Tyndall M, Toufik A, Mattick RP (2008) Global epidemiology of injecting drug use and HIV among people who inject drugs: a systematic review. Lancet 372(9651):1733–1745

    Article  Google Scholar 

  57. Joint United Nations Programme on HIV/AIDS (UNAIDS) (2008) Country progress report of the Russian Federation on the implementation of the Declaration of Commitment on HIV/AIDS. Reporting period: January 2006-December 2007. http://data.unaids.org/pub/Report/2008/russia_2008_country_progress_report_en.pdf

  58. Burchell AN, Calzavara LM, Orekhovsky V, Ladnaya NN, for the Canada AIDS Russia Project and the Russian HIV Response Network (2008) Characterization of an emerging heterosexual HIV epidemic in Russia. Sex Transm Dis 35(9):807–813

    Article  Google Scholar 

  59. World Health Organization (WHO) (2009) Towards universal access: scaling up priority HIV/AIDS interventions in the health sector. http://www.who.int/hiv/pub/tuapr_2009_en.pdf

  60. Joint United Nations Programme on HIV/AIDS (UNAIDS) (2008) Epidemiological fact sheet on HIV and AIDS: Russia 2008 update. http://apps.who.int/globalatlas/predefinedReports/EFS2008/full/EFS2008_RU.pdf

  61. Open Health Institute (OHI) (2006) Harm reduction programs in the civilian and prison sectors of the Russian Federation: assessment of best practices. http://siteresources.worldbank.org/INTECAREGTOPHIVAIDS/Resources/HRBP_final.pdf

  62. International Harm Reduction Association (IHRA) (2010) The global state of harm reduction 2010: key issues for broadening the response. http://www.ihra.net/files/2010/06/29/GlobalState2010_Web.pdf

  63. Niccolai LM, Shcherbakova IS, Toussova OV, Kozlov AP, Heimer R (2009) The potential for bridging of HIV transmission in the Russian Federation: sex risk behaviors and HIV prevalence among drug users (DUs) and their non-DU sex partners. J Urban Health 85(Suppl 1):131–143

    Article  Google Scholar 

  64. Niccolai LM, Toussova OV, Verevochkin SV, Barbour R, Heimer R, Kozlov AP (2010) High HIV prevalence, suboptimal HIV testing, and low knowledge of HIV-positive serostatus among injection drug users in St. Petersburg, Russia. AIDS Behav 14(4):932–941

    Article  Google Scholar 

  65. Tengs TO, Lin TH (2002) A meta-analysis of utility estimates for HIV/AIDS. Med Decis Making 22(6):475–481

    Article  Google Scholar 

  66. Lasry A, Sansom SL, Hicks KA, Uzunangelov V (2011) A model for allocating CDC’s HIV prevention resources in the United States. Health Care Manage Sci 14(1):115–124

    Article  Google Scholar 

  67. Kaplan EH, Merson MH (2002) Allocating HIV-preventionresources: balancing efficiency and equity. Am J Public Health 92(12):1905–1907

    Google Scholar 

  68. Institute of Medicine (IOM) (2001) No time to lose: Getting more from HIV prevention. http://home.mchsi.com/~apclc/8FedStudies1.pdf

  69. Alistar SS, Brandeau ML, Beck EJ (2013) REACH: A practical HIV resource allocation tool for decision makers. In: Zaric GS (ed) Operations research and health care policy. Springer Publishers

  70. Arrow KJ, Enthoven AC (1961) Quasi-concave programming. Econometrica 29(4):779–800

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Grant Number R01-DA15612 from the National Institute on Drug Abuse. Sabina Alistar was supported by a Stanford Graduate Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabina S. Alistar.

Appendix

Appendix

Proof of full budget spending

The Lagrangian for the optimization problem in (7) is:

$$ L\left( {{x_1},{x_2},\lambda } \right)=\frac{{\gamma \beta \left( {{x_1}} \right)\nu \left( {{x_2}} \right)+\beta \left( {{x_1}} \right){d_2}}}{{\left[ {\nu \left( {{x_2}} \right)+{d_1}} \right]{d_2}}}+\lambda \left( {{x_1}+{x_2}-C} \right)-{\lambda_1}{x_1}-{\lambda_2}{x_2}. $$
(A1)

The following Karush-Kuhn-Tucker conditions must hold at optimality:

$$ \frac{dL }{{d{x_1}}}=\frac{{\beta \prime \left( {{x_1}} \right)\left[ {\gamma \nu \left( {{x_2}} \right)+{d_2}} \right]}}{{\left[ {\nu \left( {{x_2}} \right)+{d_1}} \right]{d_2}}}+\lambda -{\lambda_1}=0 $$
(A2)
$$ \frac{dL }{{d{x_2}}}=\frac{{\beta \left( {{x_1}} \right)\nu \prime \left( {{x_2}} \right)\left[ {\gamma {d_1}-{d_2}} \right]}}{{{{{\left[ {\nu \left( {{x_2}} \right)+{d_1}} \right]}}^2}{d_2}}}+\lambda -{\lambda_2}=0 $$
(A3)
$$ \lambda \left( {{x_1}+{x_2}-C} \right)=0 $$
(A4)
$$ {\lambda_1}{x_1}=0 $$
(A5)
$$ {\lambda_2}{x_2}=0 $$
(A6)
$$ {x_1}+{x_2}-C\leq 0 $$
(A7)
$$ \lambda, {\lambda_1},{\lambda_2}\geq 0 $$
(A8)

If β(x 1) is monotonically decreasing, then β′ (x 1) < 0 for all x 1. We know that λ 1 ≥ 0. By Eq. (A2), λ > 0, which implies that x 1 + x 2 − C = 0. Similarly, if ν (x 2) is monotonically increasing, then ν′ (x 2) > 0 for all x 2, and \( \gamma <\frac{{{d_2}}}{{{d_1}}} \) is equivalent to γd 1 − d 2 < 0. We know that λ 2 ≥ 0. By Eq. (A3), λ > 0, which implies that x 1 + x 2 − C = 0. Hence, the optimal investment \( \left( {x_1^{*},x_2^{*}} \right) \) will utilize the entire budget, C.

Proof of proposition 1

If ν (x 2) is increasing and linear in x 2, then equivalently, ν (x 1) is decreasing and linear in x 1. Thus, we can rewrite R 0 in terms of one variable, x, assuming x 2 = C − x 1. \( {R_0}(x)=\frac{{\gamma \beta (x)\nu (x)+\beta (x){d_2}}}{{\left[ {\nu (x)+{d_1}} \right]{d_2}}} \). Let f(x) = γβ (x) ν (x).

$$ \begin{array}{*{20}c} {f\prime (x)=\left. {\gamma \beta (x)\nu \prime (x)+\beta \prime (x)\nu (x)} \right]<0} \\ {f\prime \prime (x)=\left. {\gamma \beta (x)\nu \prime \prime (x)+2\beta \prime (x)\nu \prime (x)+\beta \prime \prime (x)\nu (x)} \right]>0} \\ \end{array} $$

because γ > 0, β(x) > 0, β′(x) < 0, β″ (x) > 0, ν(x) > 0, ν′(x) < 0, ν″(x) = 0. Thus, f(x) is decreasing and convex.

Let g (x) = f(x) + β(x)d 2. Then

$$ \begin{array}{*{20}c} {g\prime (x)=f\prime (x)+{d_2}\beta \prime (x)<0} \hfill \\ {g\prime \prime (x)=f\prime \prime (x)+{d_2}\beta \prime \prime (x)>0} \hfill \\ \end{array} $$

because d 2 > 0, f′ (x) < 0, f″ (x) > 0, β′ (x) < 0, β″ (x) > 0. Thus, g(x) is also decreasing and convex.

Let \( h(y)=\frac{y}{{\nu (x)}} \), which is increasing in y. If g(x) is convex and thus quasi-convex, then the composite function h(g(x)) is quasi-convex. Therefore, R 0 (x 1,x 2) is quasi-convex.

Proof of proposition 2

The proof follows from the Arrow-Enthoven sufficient conditions for optimality with quasi-convex objective functions [70].

Proof of proposition 3

We compare the marginal rate of substitution (MRS) for prevention \( \left( {\frac{{d{R_0}}}{{d{x_1}}}} \right) \) and treatment \( \left( {\frac{{d{R_0}}}{{d{x_2}}}} \right) \). As long as they are different, in order to find the optimal investment we will continue to shift the investment towards the program with the lower MRS, until we reach the budget limit C. At the optimal solution \( \left( {x_1^{*},x_2^{*}} \right) \), either the two MRS are equal \( \left( {\frac{{d{R_0}}}{{d{x_1}}}=\frac{{d{R_0}}}{{d{x_2}}}} \right) \) so we are indifferent between the two programs, or we have already invested all the available budget in the most favorable intervention.

  1. Case 1:

    Since we are minimizing, we invest only in prevention if

    $$ \begin{array}{*{20}c} {\frac{{d{R_0}}}{{d{x_1}}} < \frac{{d{R_0}}}{{d{x_2}}}} \hfill \\ {\frac{{\left[ {\frac{d}{{d{x_1}}}\beta \left( {{x_1}} \right)} \right]\left[ {\gamma \nu \left( {{x_2}} \right)+{d_2}} \right]}}{{\left[ {\nu \left( {{x_2}} \right)+{d_1}} \right]{d_2}}} < \frac{{\beta \left( {{x_1}} \right)\left[ {\frac{d}{{d{x_2}}}\nu \left( {{x_2}} \right)} \right]\left[ {\gamma {d_1}-{d_2}} \right]}}{{{{{\left[ {\nu \left( {{x_2}} \right)+{d_1}} \right]}}^2}{d_2}}}} \hfill \\ \end{array} $$
    (A9)

    We have \( \frac{d}{{d{x_1}}}\beta \left( {{x_1}} \right)<0 \) because β(x 1) is decreasing, and \( \frac{d}{{d{x_2}}}\nu \left( {{x_2}} \right)>0 \) because ν(x 2) is increasing. Also, γν (x 2) + d 2 > 0 and ν (x 2) + d 1 > 0 because ν (x 2) > 0 and γ, d 1, and d 2 are positive constants. In order for (44) to always hold, γd 1 − d 2 > 0, or equivalently, \( \gamma >\frac{{{d_2}}}{{{d_1}}} \). If γd 1 − d 2 < 0, or equivalently, \( \gamma <\frac{{{d_2}}}{{{d_1}}} \), then the condition that must hold at x 1 = C, x 2 = 0 is

    $$ \frac{d}{{d{x_1}}}\beta \left( {{x_1}} \right)<\frac{{\beta \left( {{x_1}} \right)\frac{d}{{d{x_2}}}\nu \left( {{x_2}} \right)\left[ {\gamma {d_1}-{d_2}} \right]}}{{\left[ {\nu \left( {{x_2}} \right)+{d_1}} \right]\left[ {\gamma \nu \left( {{x_2}} \right)+{d_2}} \right]}}. $$
  2. Case 2:

    We invest only in treatment if \( \gamma <\frac{{{d_2}}}{{{d_1}}} \) and

    $$ \begin{array}{*{20}c} {\frac{{d{R_0}}}{{d{x_1}}} > \frac{{d{R_0}}}{{d{x_2}}}} \hfill \\ {\frac{{\left[ {\frac{d}{{d{x_1}}}\beta \left( {{x_1}} \right)} \right]\left[ {\gamma \nu \left( {{x_2}} \right)+{d_2}} \right]}}{{\left[ {\nu \left( {{x_2}} \right)+{d_1}} \right]{d_2}}} > \frac{{\beta \left( {{x_1}} \right)\left[ {\frac{d}{{d{x_2}}}\nu \left( {{x_2}} \right)} \right]\left[ {\gamma {d_1}-{d_2}} \right]}}{{{{{\left[ {\nu \left( {{x_2}} \right)+{d_1}} \right]}}^2}{d_2}}}} \hfill \\ {\frac{d}{{d{x_1}}}\beta \left( {{x_1}} \right)>\frac{{\beta \left( {{x_1}} \right)\frac{d}{{d{x_2}}}\nu \left( {{x_2}} \right)\left[ {\gamma {d_1}-{d_2}} \right]}}{{\left[ {\nu \left( {{x_2}} \right)+{d_1}} \right]\left[ {\gamma \nu \left( {{x_2}} \right)+{d_2}} \right]}}} \hfill \\ \end{array} $$
    (A10)

    which must hold at x 1 = 0, x 2 = C.

Proof of proposition 4

We have shown that at optimal points the entire budget C is used, hence if \( x_1^{*}={x^{*}} \) then \( x_2^{*}=C-{x^{*}} \).

$$ \begin{array}{*{20}c} {\frac{{d{R_0}}}{{d{x_1}}}=\frac{{d{R_0}}}{{d{x_2}}}} \hfill \\ {\frac{{\left[ {\frac{d}{{d{x_1}}}\beta \left( {{x_1}} \right)} \right]\left[ {\gamma \nu \left( {{x_2}} \right)+{d_2}} \right]}}{{\left[ {\nu \left( {{x_2}} \right)+{d_1}} \right]{d_2}}}=\frac{{\beta \left( {{x_1}} \right)\left[ {\frac{d}{{d{x_2}}}\nu \left( {{x_2}} \right)} \right]\left[ {\gamma {d_1}-{d_2}} \right]}}{{{{{\left[ {\nu \left( {{x_2}} \right)+{d_1}} \right]}}^2}{d_2}}}} \hfill \\ {\frac{d}{{d{x_1}}}\beta \left( {{x_1}} \right)=\frac{{\beta \left( {{x_1}} \right)\frac{d}{{d{x_2}}}\nu \left( {{x_2}} \right)\left[ {\gamma {d_1}-{d_2}} \right]}}{{\left[ {\nu \left( {{x_2}} \right)+{d_1}} \right]\left[ {\gamma \nu \left( {{x_2}} \right)+{d_2}} \right]}}} \hfill \\ \end{array} $$
(A11)

For optimality, this condition must hold at \( x_1^{*}={x^{*}},\;x_2^{*}=C-{x^{*}} \), which yields the condition described in the proposition statement.

Proof of corollary 1

Suppose γ = 0 (that is, treatment completely eliminates the chance of disease transmission), which most optimistically favors treatment over prevention. By the previous proposition, we should invest only in treatment if at (x 1 = 0, x 2 = C):

$$ \begin{array}{*{20}c} {\frac{{d{R_0}}}{{d{x_1}}} > \frac{{d{R_0}}}{{d{x_2}}}} \hfill \\ {\frac{{\left[ {\frac{d}{{d{x_1}}}\beta \left( {{x_1}} \right)} \right]\left[ {\gamma \nu \left( {{x_2}} \right)+{d_2}} \right]}}{{\left[ {\nu \left( {{x_2}} \right)+{d_1}} \right]{d_2}}} > \frac{{\beta \left( {{x_1}} \right)\left[ {\frac{d}{{d{x_2}}}\nu \left( {{x_2}} \right)} \right]\left[ {\gamma {d_1}-{d_2}} \right]}}{{{{{\left[ {\nu \left( {{x_2}} \right)+{d_1}} \right]}}^2}{d_2}}}} \hfill \\ {\frac{d}{{d{x_1}}}\beta \left( {{x_1}} \right)>-\frac{d}{{d{x_2}}}\nu \left( {{x_2}} \right)\frac{1}{{\nu \left( {{x_2}} \right)+{d_1}}}\beta \left( {{x_1}} \right)} \hfill \\ \end{array} $$

because γ = 0. If ν (x 2) = kx 2, then at the point (x 1 = 0, x 2 = C):

$$ \begin{array}{*{20}c} {\frac{d}{{d{x_1}}}\beta \left( {{x_1}} \right)>-k\frac{1}{{k{x_2}+{d_1}}}\beta (0)} \hfill \\ {\frac{d}{{d{x_1}}}\beta (0)>-\frac{1}{{C+\frac{{{d_1}}}{k}}}\beta (0)} \hfill \\ \end{array} $$
(A12)

Equation (A12) defines the condition when it is optimal to spend only on treatment. Therefore, it is optimal to spend some amount on prevention (\( x_1^{*} > 0,x_2^{*}\geq 0 \)) if:

$$ \frac{d}{{d{x_1}}}\beta (0)<-\frac{{\beta (0)}}{{C+\frac{{{d_1}}}{k}}} $$
(A13)

Proof of corollary 2

By the envelope theorem, if the optimal investment at γ = 0 includes some prevention, then as treatment becomes less effective at reducing infectivity (\( \widehat{\gamma} > 0 \)), the optimal solution must not increase investment in treatment. Mathematically, as γ increases, \( \frac{{d{R_0}}}{{d{x_2}}}=\frac{{v\prime \left( {{x_2}} \right)\left[ {\gamma {d_1}-{d_2}} \right]}}{{{{{\left[ {\nu \left( {{x_2}} \right)+{d_1}} \right]}}^2}{d_2}}} \) increases, so R 0 will increase as x 2 increases. Therefore, it cannot be optimal to have \( \widehat{x}_2^{*} > x_2^{*} \).

Illustrative numerical examples of optimal allocation for different production functions and a single population

Figure 3 shows numerical examples of R 0 for different production functions. These examples assume d 1 = 1/10 (average life expectancy of an infected individual is 10 years), d 2 = 1/25 (average life expectancy of a treated individual is 25 years). The budget, C = 1, is entirely spent and the optimal allocation between prevention (\( x_1^{*} \)) and treatment (\( x_2^{*} \)) is given. In Fig. 3a, \( \gamma >\frac{{{d_2}}}{{{d_1}}} \), and the reduction in infectivity due to treatment is too low to invest any amount in treatment (\( x_1^{*}=1,x_2^{*}=0 \)). In Fig. 3b, \( \gamma <\frac{{{d_2}}}{{{d_1}}} \) and \( \frac{d}{{d{x_1}}}\beta (0)=-\infty \), and it is optimal to invest some amount in prevention (\( x_1^{*}=0.6821,x_2^{*}=0.3179 \)). In Fig. 3c, \( \gamma <\frac{{{d_2}}}{{{d_1}}} \) and \( \frac{d}{{d{x_1}}}\beta (0)=-\infty \), and it is optimal to allocate more to prevention because the treatment production function ν (x 2) has diminishing returns (\( x_1^{*}=0.8488,x_2^{*}=0.1512 \)). In Fig. 3d, \( \gamma <\frac{{{d_2}}}{{{d_1}}} \) and it is easy to verify that \( \frac{d}{{d{x_1}}}\beta (0)>\frac{{\frac{d}{{d{x_2}}}\nu (C)\left[ {\gamma {d_1}-{d_2}} \right]}}{{\left[ {\nu (C)+{d_1}} \right]\left[ {\gamma \nu (C)+{d_2}} \right]}} \). Thus, it is optimal to invest only in treatment (\( x_1^{*}=0,x_2^{*}=1 \)).

Proof of proposition 5

The Lagrangian for the redefined problem is:

$$ \begin{array}{*{20}c} {L\left( {{x_i},{C_i},{x_j},{C_j},\lambda } \right)=\frac{{{\alpha_i}{\gamma_i}{\beta_i}\left( {{C_i}-{x_i}} \right){\nu_i}\left( {{x_i}} \right)+{\beta_i}\left( {{C_i}-{x_i}} \right){d_{i2 }}}}{{\left[ {{\nu_i}\left( {{x_i}} \right)+{d_{i1 }}} \right]{d_{i2 }}}}} \hfill \\ {+\frac{{{\alpha_j}{\gamma_j}{\beta_j}\left( {{C_j}-{x_j}} \right){\nu_j}\left( {{x_j}} \right)+{\beta_j}\left( {{C_j}-{x_j}} \right){d_{j2 }}}}{{\left[ {{\nu_j}\left( {{x_j}} \right)+{d_{j1 }}} \right]{d_{j2 }}}}} \hfill \\ {+\lambda \left( {{C_i}+{C_j}-C} \right)+{\lambda_i}\left( {{x_i}-{C_i}} \right)+{\lambda_j}\left( {{x_j}-{C_j}} \right).} \hfill \\ \end{array} $$
(A14)

The following Karush-Kuhn-Tucker conditions must hold at optimality:

$$ \frac{dL }{{d{x_i}}}=\frac{{-{\alpha_i}\beta_i^{\prime}\left( {{C_i}-{x_i}} \right)\left[ {{\gamma_i}{\nu_i}\left( {{x_i}} \right)+{d_{i2 }}} \right]}}{{\left[ {{\nu_i}\left( {{x_i}} \right)+{d_{i1 }}} \right]{d_{i2 }}}}+{\beta_i}\left( {{C_i}-{x_i}} \right)\frac{{{\alpha_i}\nu_i^{\prime}\left( {{x_i}} \right)\left[ {{\gamma_i}{d_{i1 }}-{d_{i2 }}} \right]}}{{{{{\left[ {{\nu_i}\left( {{x_i}} \right)+{d_{i1 }}} \right]}}^2}{d_{i2 }}}}+{\lambda_i}=0 $$
(A15)
$$ \frac{dL }{{d{x_j}}}=\frac{{-{\alpha_j}\beta_j^{\prime}\left( {{C_j}-{x_j}} \right)\left[ {{\gamma_j}{\nu_j}\left( {{x_j}} \right)+{d_{j2 }}} \right]}}{{\left[ {{\nu_j}\left( {{x_j}} \right)+{d_{j1 }}} \right]{d_{j2 }}}}+{\beta_j}\left( {{C_j}-{x_j}} \right)\frac{{{\alpha_j}\nu_j^{\prime}\left( {{x_j}} \right)\left[ {{\gamma_j}{d_{j1 }}-{d_{j2 }}} \right]}}{{{{{\left[ {{\nu_j}\left( {{x_j}} \right)+{d_{j1 }}} \right]}}^2}{d_{j2 }}}}+{\lambda_j}=0 $$
(A16)
$$ \frac{dL }{{d{C_i}}}=\frac{{{\alpha_i}\beta_i^{\prime}\left( {{C_i}-{x_i}} \right)\left[ {{\gamma_i}{\nu_i}\left( {{x_i}} \right)+{d_{12 }}} \right]}}{{\left[ {{\nu_i}\left( {{x_i}} \right)+{d_{i1 }}} \right]{d_{12 }}}}+\lambda -{\lambda_i}=0 $$
(A17)
$$ \frac{dL }{{d{C_j}}}=\frac{{{\alpha_j}\beta_j^{\prime}\left( {{C_j}-{x_j}} \right)\left[ {{\gamma_j}{\nu_j}\left( {{x_j}} \right)+{d_{j2 }}} \right]}}{{\left[ {{\nu_j}\left( {{x_j}} \right)+{d_{j1 }}} \right]{d_{j2 }}}}+\lambda -{\lambda_j}=0 $$
(A18)
$$ \lambda \left( {{C_i}+{C_j}-C} \right)=0 $$
(A19)
$$ {\lambda_i}\left( {{x_i}-{C_i}} \right)=0 $$
(A20)
$$ {\lambda_j}\left( {{x_j}-{C_j}} \right)=0 $$
(A21)
$$ {C_i}+{C_j}-C\leq 0 $$
(A22)
$$ {x_i}-{C_i}\leq 0 $$
(A23)
$$ {x_j}-{C_j}\leq 0 $$
(A24)
$$ \lambda, {\lambda_i},{\lambda_j}\geq 0 $$
(A25)
  1. Condition 1:

    If β i (C i  − x i ) is monotonically decreasing, then \( \beta_i^{\prime}\left( {{C_i}-{x_i}} \right)<0 \) for all x i . By Eq. (A17), λ − λ i  > 0, thus λ > λ i . But λ i  ≥ 0, hence λ > 0, which from Eq. (A19) implies C i  + C j  − C = 0. Similarly, if β j (C j  − x j ) is monotonically decreasing, then \( \beta_j^{\prime}\left( {{C_j}-{x_j}} \right)<0 \) for all x j . By (A18), λ − λ j  > 0, which implies that C i  + C j  − C = 0. If ν (x 2) is monotonically increasing, then ν′ (x 2) > 0 for all x 2, and \( \gamma <\frac{{{d_2}}}{{{d_1}}} \) is equivalent to γd 1 − d 2 < 0. By (A3), λ > 0, which implies that x 1 + x 2 − C = 0. Hence, the optimal investment \( \left( {x_1^{*},x_2^{*}} \right) \) will utilize the entire budget, C.

  2. Condition 2:

    From (A15) and (A17), \( \lambda =-{\beta_i}\left( {{C_i}-{x_i}} \right)\frac{{{\alpha_i}\nu_i^{\prime}\left( {{x_i}} \right)\left( {{\gamma_i}{d_{i1 }}-{d_{i2 }}} \right)}}{{{{{\left[ {{\nu_i}\left( {{x_i}} \right)+{d_{i1 }}} \right]}}^2}{d_{i2 }}}} \). If ν i (x i ) is monotonically increasing and \( {\gamma_i} < \frac{{{d_{i2 }}}}{{d{i_1}}} \), then \( \nu_i^{\prime}\left( {{x_i}} \right)>0 \) and γ i d i1 − d i2 < 0, hence λ > 0, which from (A19) implies C i  + C j  − C = 0. Similarly, from (A16) and (A18), \( \lambda =-{\beta_j}\left( {{C_j}-{x_j}} \right)\frac{{{\alpha_j}\nu_j^{\prime}\left( {{x_j}} \right)\left( {{\gamma_j}{d_{j1 }}-{d_{j2 }}} \right)}}{{{{{\left[ {{\nu_j}\left( {{x_j}} \right)+{d_{j1 }}} \right]}}^2}{d_{j2 }}}} \). If ν j (x j ) is monotonically increasing and \( {\gamma_j} < \frac{{{d_{j2 }}}}{{{d_{j1 }}}} \), then \( \nu_j^{\prime}\left( {{x_j}} \right)>0 \) and γ i d i1 − d i2 < 0, then λ > 0, which from (A19) implies C i  + C j  − C = 0.

Derivation of R 0 for one population

For the given system, (1) – (4), we have:

$$ \begin{array}{*{20}c} {z=\left[ {I,T,S} \right]} \\ {A(z)=\left[ {\beta \left( {I+\gamma T} \right)\frac{S}{N},0,0} \right]} \\ {\Im (z)=\left[ {\nu I+{d_1}I,-\nu I+{d_2}T,-bN+\beta \left( {I+\gamma T} \right)\frac{S}{N}+bS} \right]} \\ \end{array} $$

The infected compartments are I and T, so the number of infected compartments is m = 2. Defining F and V as above, we obtain the following expression for the next generation matrix FV −1:

$$ \begin{array}{*{20}c} {F=\left[ {\begin{array}{*{20}c} \beta \hfill & {\beta \gamma } \hfill \\ 0 \hfill & 0 \hfill \\ \end{array}} \right],V=\left[ {\begin{array}{*{20}c} {\nu +{d_1}} \hfill & 0 \hfill \\ {-\nu } \hfill & {{d_2}} \hfill \\ \end{array}} \right]} \hfill \\ {F{V^{-1 }}=\left[ {\begin{array}{*{20}c} {\frac{{\gamma \beta \nu +\beta {d_2}}}{{\left( {\nu +{d_1}} \right){d_2}}}} & {\frac{{\gamma \beta }}{{{d_2}}}} \\ 0 & 0 \\ \end{array}} \right]} \hfill \\ \end{array} $$

The eigenvalues are \( {R_0}=\frac{{\gamma \beta \nu +\beta {d_2}}}{{\left( {\nu +{d_1}} \right){d_2}}} \) and 0.

Derivation of R 0 for two interacting populations case

We rewrite the differential equations for the two interacting populations, (16)–(23), to include the parameter r = N i /N j :

$$ \frac{{d{S_i}}}{dt }={b_i}{N_i}-\left( {{\beta_{ii }}{I_i}+{\gamma_i}{\beta_{ii }}{T_i}+r{\beta_{ji }}{I_j}+r{\gamma_j}{\beta_{ji }}{T_j}} \right){{{{S_i}}} \left/ {{{N_i}-{b_i}{S_i}}} \right.} $$
(A26)
$$ \frac{{d{I_i}}}{dt }=\left( {{\beta_{ii }}{I_i}+{\gamma_i}{\beta_{ii }}{T_i}+r{\beta_{ji }}{I_j}+r{\gamma_j}{\beta_{ji }}{T_j}} \right){{{{S_i}}} \left/ {{{N_i}-{\nu_i}{I_i}-{d_{i1 }}{I_i}}} \right.} $$
(A27)
$$ \frac{{d{T_i}}}{dt }={\nu_i}{I_i}-{d_{i2 }}{T_i} $$
(A28)
$$ {N_i}={S_i}+{I_i}+{T_i} $$
(A29)
$$ \frac{{d{S_j}}}{dt }={b_j}{N_j}-\left( {{\beta_{jj }}{I_j}+{\gamma_j}{\beta_{jj }}{T_j}+{1 \left/ {r* } \right.}{\beta_{ij }}{I_i}+{1 \left/ {r* } \right.}{\gamma_i}{\beta_{ij }}{T_i}} \right){{{{S_j}}} \left/ {{{N_j}-{b_j}{S_j}}} \right.} $$
(A30)
$$ \frac{{d{S_j}}}{dt }=\left( {{\beta_{jj }}{I_j}+{\gamma_j}{\beta_{jj }}{I_i}+{1 \left/ {r* } \right.}{\beta_{ij }}{I_j}+{1 \left/ {{r*{\gamma_i}{\beta_{ij }}{T_i}}} \right.}} \right){{{{S_j}}} \left/ {{{N_j}-{\nu_j}{I_j}-{d_{j1 }}{I_j}}} \right.} $$
(A31)
$$ \frac{{d{T_j}}}{dt }={\nu_j}{I_j}-{d_{j2 }}{T_j} $$
(A32)
$$ {N_j}={S_j}+{I_j}+{T_j} $$
(A33)

Let z be the vector representing the number of individuals in each compartment, A k (z) the rate of appearance of new infections in compartment z k , and k (z) the rate of change in compartment z k by all other means. For the given system:

$$ \begin{array}{*{20}c} {z=\left[ {{I_i},{T_i},{I_j},{T_j},{S_i},{S_j}} \right]} \\ {A(z)=\left[ {\left( {{\beta_{ii }}{I_i}+{\gamma_i}{\beta_{ii }}{T_i}+r{\beta_{ji }}{I_j}+r{\gamma_j}{\beta_{ji }}{T_j}} \right){{{{S_i}}} \left/ {{{N_i},0,}} \right.}} \right.} \\ \end{array} $$
(A34)
$$ \left. {\left( {{\beta_{jj }}{I_j}+{\gamma_j}{\beta_{jj }}{T_j}+{1 \left/ {r* } \right.}{\beta_{ij }}{I_i}+{1 \left/ {r* } \right.}{\gamma_i}{\beta_{ij }}{T_i}} \right){{{{S_j}}} \left/ {{{N_j},0,0,0}} \right.}} \right] $$
(A35)
$$ \Im (z)=\left[ {{\nu_i}{I_i}+{d_{i1 }}{I_i},-{\nu_i}{I_i}+{d_{i2 }}{T_i},{\nu_j}{I_j}} \right.+{d_{j1 }}{I_j},{\nu_j}{I_j}+{d_{j2 }}{T_j}, $$
$$ -{b_i}{N_i}+\left( {{\beta_{ii }}{I_i}+{\gamma_i}{\beta_{ii }}{T_i}+r{\beta_{ji }}{I_j}+r{\gamma_j}{\beta_{ji }}{T_j}} \right){{{{S_i}}} \left/ {{{N_i}+{b_i}{S_i},}} \right.} $$
$$ \left. {-{b_j}{N_j}+\left( {{\beta_{jj }}{I_j}+{\gamma_j}{\beta_{jj }}{T_j}+{1 \left/ {r* } \right.}{\beta_{ij }}{I_i}+{1 \left/ {{r*{\gamma_i}{\beta_{ij }}{T_i}}} \right.}} \right){{{{S_j}}} \left/ {{{N_j}+{b_j}{S_j}}} \right.}} \right] $$
(A36)

The infected compartments are I i , T i , I j , and T j , so the number of infected compartments is m = 4. Defining F and V as below, we obtain the following expression for the next generation matrix FV −1:

$$ \begin{array}{*{20}c} {F=\left[ {\frac{{\partial {A_k}}}{{\partial {z_l}}}\left( {{z_0}} \right)} \right],V=\left[ {\frac{{\partial {\Im_k}}}{{\partial {z_l}}}\left( {{z_0}} \right)} \right],\mathrm{with}1\leq {\it k}, {\it l} \leq {\it m}} \\ {F=\left[ {\begin{array}{*{20}c} {{\beta_i}} & {{\gamma_i}{\beta_{ii }}} & {r{\beta_{ji }}} & {r{\gamma_j}{\beta_{ji }}} \\ 0 & 0 & 0 & 0 \\ {{\beta_j}} & {{\gamma_j}{\beta_{jj }}} & {{1 \left/ {{r*{\beta_{ij }}}} \right.}} & {{1 \left/ {{r*{\gamma_i}{\beta_{ij }}}} \right.}} \\ 0 & 0 & 0 & 0 \\ \end{array}} \right],V=\left[ {\begin{array}{*{20}c} {{\nu_i}+{d_{i1 }}} & 0 & 0 & 0 \\ {-{\nu_i}} & {{d_{12 }}} & 0 & 0 \\ 0 & 0 & {{\nu_j}+{d_{j1 }}} & 0 \\ 0 & 0 & {-{\nu_j}} & {{d_{j2 }}} \\ \end{array}} \right]} \\ \end{array} $$
(A37)
$$ F{V^{-1 }}=\left[ {\begin{array}{*{20}c} {\frac{{{\beta_{ii }}\left( {{d_{i2 }}+{\gamma_i}{\nu_i}} \right)}}{{{d_{i2 }}\left( {{\nu_i}+{d_{i1 }}} \right)}}} & {\frac{{{\gamma_i}{\beta_{ii }}}}{{{d_{i2 }}}}} & {\frac{{{\beta_{ji }}r\left( {{d_{j2 }}+{\gamma_j}\nu } \right)}}{{{d_{j2 }}\left( {{\nu_j}+{d_{j1 }}} \right)}}} & {\frac{{r{\gamma_j}{\beta_{ji }}}}{{{d_{j2 }}}}} \\ 0 & 0 & 0 & 0 \\ {\frac{{{\beta_{jj }}\left( {{d_{i2 }}+{\gamma_j}{\nu_i}} \right)}}{{{d_{i2 }}\left( {{\nu_i}+{d_{i1 }}} \right)}}} & {\frac{{{\gamma_j}{\beta_{jj }}}}{{{d_{i2 }}}}} & {\frac{{{\beta_{ij }}\left( {{d_{j2 }}+{\gamma_i}{\nu_j}} \right)}}{{{d_{j2 }}r\left( {{\nu_j}+{d_{j1 }}} \right)}}} & {\frac{{{\beta_{ij }}{\gamma_i}}}{{r{d_{j2 }}}}} \\ 0 & 0 & 0 & 0 \\ \end{array}} \right] $$
(A38)

The (k, l) entry of FV −1 gives the expected number of new infections caused in compartment k by an infected individual in compartment l. R 0 is defined as the spectral radius of FV −1 and is as given in Eq. (25).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alistar, S.S., Long, E.F., Brandeau, M.L. et al. HIV epidemic control—a model for optimal allocation of prevention and treatment resources. Health Care Manag Sci 17, 162–181 (2014). https://doi.org/10.1007/s10729-013-9240-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10729-013-9240-4

Keywords

Navigation