Skip to main content
Log in

The Core of Consistency in AHP-Group Decision Making

  • Published:
Group Decision and Negotiation Aims and scope Submit manuscript

Abstract

This paper presents a new tool, the Consistency Consensus Matrix, designed to encourage the search for consensus in group decision making when using the Analytic Hierarchy Process (AHP). The procedure exploits one of the characteristics of AHP: the possibility of measuring consistency in judgement elicitation. Using two other tools, Preference Structures and Stability Intervals, we derive the Consistency Consensus Matrix that corresponds to the actor’s core of consistency. The performance analysis of the preference structure obtained from this matrix provides us with valuable information in search for knowledge. The new tool is illustrated by means of a case study adapted from a real-life experiment in e-democracy developed for the City Council of Zaragoza (Spain).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aguarón J, Escobar MT, Moreno-Jiménez JM (2003) Consistency Stability Intervals for a Judgement in AHP Decision Support Systems. Eur J Oper Res 145(2):382–393

    Article  Google Scholar 

  • Aguarón J, Moreno-Jiménez JM (2000) Local stability intervals in the analytic hierarchy process. Eur J Oper Res 125(1):114–133

    Article  Google Scholar 

  • Aguarón J, Moreno-Jiménez JM (2003) The geometric consistency index: approximated thresholds. Eur J Oper Res 147(1):137–145

    Article  Google Scholar 

  • Barzilai J (2001) Notes on the analytic hierarchy process, Proceedings of the NSF design and manufacturing research conference 1–6

  • Condon E, Golden B, Wasil E (2003) Visualizing group decisions in the analytic hierarchy process. Comp Oper Res 30(10):1435–1445

    Article  Google Scholar 

  • Crawford G, Williams C (1985) A note on the analysis of subjective judgement matrices. J Math Psychol 29:387–405

    Article  Google Scholar 

  • Escobar MT, Moreno-Jiménez JM (2000) Reciprocal distributions in the analytic hierarchy process. Eur J Oper Res 123:154–174

    Article  Google Scholar 

  • Escobar MT, Moreno-Jiménez JM (2006) Aggregation of individual preference structures in AHP-group decision making. forthcoming in Group Decision and Negotiation

  • Forman E, Peniwati K (1998) Aggregating individual judgements and priorities with the analytic hierarchy process. Eur J Oper Res 108:165–169

    Article  Google Scholar 

  • Harker PT (1987) Incomplete pairwise comparisons in the analytic hierarchy process. Math Model 9:837–848

    Article  Google Scholar 

  • Moreno-Jiménez JM, Aguarón J, Altuzarra A, Escobar MT, Turón A (2005a) Decisional tools for knowledge improvement in e-cognocracy. In: Bhlen et al (eds) TED Conference on e-government. Electronic democracy: The challenge ahead. University Rudolf Trauner-Verlag, Schriftenreihe Informatik 13, pp. 70–78

  • Moreno-Jiménez JM, Aguarón J, Escobar MT, Turón A (1999) The multicriteria procedural rationality on Sisdema. Eur J Oper Res 119(2):388–403

    Article  Google Scholar 

  • Moreno-Jiménez JM, Aguarón J, Raluy A, Turón A (2005b) A Spreadsheet module for consensus building in AHP group decision making. Group Decis Negot 14(2):89–108

    Article  Google Scholar 

  • Moreno-Jiménez JM, Polasek W (2003) E-Democracy and knowledge. A multicriteria framework for the new democratic era. J Multi-criteria Decis Anal 12:163–176

    Article  Google Scholar 

  • Moreno-Jiménez JM, Vargas LG (1993) A probabilistic study of preference structures in the analytic hierarchy process with interval judgments. Math Comp Model 17(4/5):73–81

    Article  Google Scholar 

  • Ramanathan R, Ganesh LS (1994) Group preference aggregation methods employed in AHP: An evaluation and intrisic process for deriving members’ weightages. Eur J Oper Res 79:249–265

    Article  Google Scholar 

  • Saaty TL (1980) Multicriteria decision making: The analytic hierarchy process. McGraw-Hill. New␣York

    Google Scholar 

  • Saaty TL (1989) Group decision making and the AHP. In: Golden BL, Wasil EA, Harker PT (eds), The analytic hierarchy process: application and studies 59–67

  • Saaty TL (1994) Fundamentals of decision making. RSW Publications

  • Tone K (1996) Two technical notes on the AHP based on the Geometric Mean Method, Proceedings of ISAHP’96, pp. 375–381

Download references

Acknowledgements

Earlier versions of this paper have been presented in the 12th MiniEuro Conference (Brussels, April 2002) and at the Workshop on e-democracy (TED-ESF) held in Madrid (May 2003). The work has been partially funded under Research Projects “Electronic Government. Internet-based Complex Decision Making: e-democracy and e-cognocracy” (Ref. PM2004-052) and “Internet-based Complex Decision Making. Decisional Tools for e-cognocracy” (Ref. TSI2005-02511).

The authors wish to express their thanks to the referees for their helpful observations and suggestions on an earlier version of this paper. They are also grateful to Stephen Wilkins for helping with the translation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Moreno-Jiménez.

Appendix

Appendix

1.1 Proof of Theorem 1

Notation

Let A = (a ij ), i, j =  1,..., n, be a pairwise comparison matrix, ω =  (ω i ) be its associated priority vector, e ij the error obtained when estimating the judgement a ij from the priority vector ω (e ij a ij ω j i ), A′ = (a ij ′) the matrix obtained when modifying the original judgements, and t ij the relative variations in the judgements (t ij  = a ij ′/a ij ) and ρ ij t 1/n ij .

Lemma 1

Given A = (a ij ), i, j = 1,..., n, and its variation A′ = (a ij ′), the new values of the judgement errors when applying the row geometric mean method are:

$$ e'_{ij}=e_{ij}\rho_{ij}^n\prod_{k=1}^n\frac{\rho_{jk}}{\rho_{ik}} $$
(8)

Proof.

Immediate, on applying the definition of the priorities obtained with the RGMM.

Lemma 2

Given A = (a ij ), i, j = 1,..., n, and its variation A′ = (a ij ), the new value of the GCI is

$$ GCI'=\frac{1}{(n-1)(n-2)}\left[ \sum_{i,j=1}^n\log^2 e_{ij}t_{ij}- \frac{2}{n}\sum_{i=1}^n\left(\sum_{j=1}^n \log t_{ij}\right)^2\right] $$
(9)

Proof.

Applying the expression of the GCI and expression (8) we have:

$$GCI'=\frac{1}{(n-1)(n-2)}\sum_{i,j=1}^n\log^2 e'_{ij}=\frac{1}{(n-1)(n-2)}\sum_{i,j=1}^n\log^2 (e_{ij}\rho_{ij}^n\prod_{k=1}^n\frac{\rho_{jk}}{\rho_{ik}}) $$

where \(\rho_{ij}=\left(\frac{a'_{ij}}{a_{ij}}\right)^{1/n}.\) Developing the expression of the square of the logarithm:

$$\eqalign{ \nonumber GCI'=\frac{1}{(n-1)(n-2)}\sum_{i,j=1}^n\left(\log e_{ij}+\log\rho_{ij}^n\prod_{k=1}^n\frac{\rho_{jk}}{\rho_{ik}}\right)^2\cr = \frac{1}{(n-1)(n-2)}\cr \quad\times\left( \sum_{i,j=1}^n\log^2e_{ij}+{\underbrace{\sum_{i,j=1}^n\log^2\rho_{ij}^n\prod_{k=1}^n\frac{\rho_{jk}}{\rho_{ik}}}_{=A}} \quad+\quad\underbrace{2\sum_{i,j=1}^n\log e_{ij}\log\rho_{ij}^n\prod_{k=1}^n\frac{\rho_{jk}}{\rho_{ik}}}_{=B} \right) }<!endaligned> $$
(10)

Let us now operate with the term A

$$ \eqalign{ A=\sum_{i,j=1}^n\log^2\rho_{ij}^n+ \underbrace{\sum_{i,j=1}^n\log^2\prod_{k=1}^n\frac{\rho_{jk}}{\rho_{ik}}}_{=A_1}+ \underbrace{2\sum_{i,j=1}^n \log\rho_{ij}^n\log\prod_{k=1}^n\frac{\rho_{jk}}{\rho_{ik}}}_{=A_2} }<!endaligned> $$

For A 1 we have, after simple computations:

$$ \eqalign{ A_1=\sum_{i,j=1}^n\left(\log\prod_{k=1}^n\rho_{jk}-\log\prod_{k=1}^n\rho_{ik}\right)^2\cr =2n\sum_{i=1}^n \left(\sum_{k=1}^n\log\rho_{ik}\right)^2 -2\sum_{i=1}^n \left[\left(\log \prod_{k=1}^n\rho_{ik}\right)\left(\log \prod_{j < k=1}^n\rho_{jk}\rho_{kj}\right)\right] }<!endaligned> $$

As ρ jk and ρ kj are reciprocal, the last product equals 1, the logarithm is null and, therefore, all the second term of A 1 equals 0. With all these, and changing the index k by j, we have:

$$ A_1=2n\sum_{i=1}^n \left(\sum_{j=1}^n\log\rho_{ij}\right)^2 $$

Let us now consider the value of A 2

$$ \eqalign{ A_2=2n\left[\sum_{i,j=1}^n \left(\log\rho_{ij}\log\prod_{k=1}^n\rho_{jk}- \log\rho_{ij}\log\prod_{k=1}^n\rho_{ik}\right)\right]\cr =2n\left[\sum_{i,j=1}^n \log\rho_{ij}\log\prod_{k=1}^n\rho_{jk}+ \sum_{i,j=1}^n\log\rho_{ji}\log\prod_{k=1}^n\rho_{ik}\right]= 4n\sum_{i,j=1}^n \left(\log\rho_{ij}\log\prod_{k=1}^n\rho_{jk}\right)\cr =4n\sum_{j=1}^n \left(\log\prod_{k=1}^n\rho_{jk}\sum_{i=1}^n\log\rho_{ij}\right)= 4n\sum_{j=1}^n \left(\sum_{k=1}^n\log\rho_{jk}\sum_{i=1}^n\log\rho_{ij}\right)\cr =-4n\sum_{j=1}^n \left(\sum_{k=1}^n\log\rho_{jk}\sum_{i=1}^n\log\rho_{ji}\right)= -4n\sum_{j=1}^n \left(\sum_{i=1}^n\log\rho_{ji}\right)^2 }<!endaligned> $$

Swapping the indexes i and j:

$$ A_2=-4n\sum_{i=1}^n \left(\sum_{j=1}^n\log\rho_{ij}\right)^2 $$

With the values of A 1 and A 2 we have:

$$ A=\sum_{i,j=1}^n\log^2\rho_{ij}^n-2n\sum_{i=1}^n \left(\sum_{j=1}^n\log\rho_{ij}\right)^2 $$

Now, the term B

$$ \eqalign{ B=2\left(\sum_{i,j=1}^n\log e_{ij}\log\rho_{ij}^n+\sum_{i,j=1}^n\log e_{ij}\log\prod_{k=1}^n\frac{\rho_{jk}}{\rho_{ik}}\right)\cr =2n\sum_{i,j=1}^n\log e_{ij}\log\rho_{ij}+ \underbrace{2\sum_{i,j=1}^n\log e_{ij}\log\prod_{k=1}^n\frac{\rho_{jk}}{\rho_{ik}}}_{B_1} }<!endaligned> $$

Finally, developing B 1:

$$ \openup-2pt\eqalign{ B_1=2\sum_{i,j=1}^n\log e_{ij}\log\prod_{k=1}^n \rho_{jk}- 2\sum_{i,j=1}^n\log e_{ij}\log\prod_{k=1}^n\rho_{ik}\cr =2\sum_{i,j=1}^n\log e_{ij}\log\prod_{k=1}^n \rho_{jk}+ 2\sum_{i,j=1}^n\log e_{ji}\log\prod_{k=1}^n\rho_{ik} }<!endaligned> $$

Therefore:

$$ \eqalign{ B_1=4\sum_{i,j=1}^n\left[\log e_{ij}\log\prod_{k=1}^n \rho_{jk}\right]= 4\sum_{j=1}^n\left[\log\prod_{k=1}^n \rho_{jk}\left(\sum_{i=1}^n\log e_{ij}\right)\right] }<!endaligned> $$

As \({\prod_{j}e_{rj}=1}\) we have ∑ n i=1 log e ij  = 0 and then B 1 = 0. The value of B will be:

$$B=2n\sum_{i,j=1}^n\log e_{ij}\log\rho_{ij}$$

Finally, returning to the value of GCI′ in expression (10), after simple computations:

$$\eqalign{(n-1)(n-2)GCI' =\sum_{i,j=1}^n\log^2e_{ij}+A+B\cr =\sum_{i,j=1}^n\left(\log e_{ij}+n\log\rho_{ij}\right)^2 -2n\sum_{i=1}^n \left(\sum_{j=1}^n\log\rho_{ij}\right)^2 }<!endaligned> $$

If we now consider \({t_{ij}=\frac{a'_{ij}}{a_{ij}}}\), log t ij  = nlogρ ij and then:

$$ GCI'=\frac{1}{(n-1)(n-2)}\left[ \sum_{i,j=1}^n\left(\log e_{ij}+\log t_{ij}\right)^2-\frac{2}{n} \sum_{i=1}^n \left(\sum_{j=1}^n\log t_{ij}\right)^2\right]\qquad \# $$

Proof.

If we make the variable change x ij  = log t ij , the condition imposed to demand that the increase in inconsistency would be less than Δ is:

$$ \frac{1}{(n-1)(n-2)}\left[ \sum_{i,j=1}^n\left(\log e_{ij}+x_{ij}\right)^2- \frac{2}{n}\sum_{i=1}^n\left(\sum_{j=1}^n x_{ij}\right)^2\right]\le GCI+\Delta $$
(11)

On determining the maximum value of δ so that if t ij ∈ [1/δ, δ], the inconsistency does not increase its value above δ, it is equivalent to determining the maximum value of x* so that if x ∈ [−x*, x*] the inequality above is verified. In other words, we must determine the maximum ball (L norm) centred in the origin which verifies the inequality (11). The radius of this ball is determined by the closest point in the frontier to the origin in L. In order to obtain the radius we must solve the optimisation problem (5). \({\qquad}\) #

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moreno-Jiménez, J.M., Aguarón, J. & Escobar, M.T. The Core of Consistency in AHP-Group Decision Making. Group Decis Negot 17, 249–265 (2008). https://doi.org/10.1007/s10726-007-9072-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10726-007-9072-z

Keywords

Navigation