Skip to main content
Log in

Generation of new salt-tolerant wheat lines and transcriptomic exploration of the responsive genes to ethylene and salt stress

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Wheat (Triticum aestivum L.) is one of the most important staple crops. Most of wheat varieties are sensitive to salt stress, which is a major limitation for wheat production. To develop salt-tolerant wheat varieties for sustainable grain production, we used ethylmethylsulfonate to mutagenize over 90,000 seeds of the wheat cultivar Luyuan502. A total of 2000 salt-tolerant lines were identified after screening the plants in a salinized field. We further analyzed ethylene sensitivity, salt related physiological changes, and preliminary crop yield of the selected plants. We found 11 salt-tolerant lines exhibiting ethylene insensitivity and high grain production. Transcriptome analysis revealed 3278 differently expressed genes (DEGs) in the selected mutants, including the ones encoding CABs, PERs/PODs, BGLUs, CYP707s, and ZEPs. Most of DEGs may be involved in photosynthesis, biosynthesis of secondary metabolites, cyanoamino acid metabolism, carotenoid biosynthesis, thiamine metabolism, and cutin, suberine and wax biosynthesis pathways. In addition, 9 novel ETHYLENE RESPONSE FACTORs (ERFs) were identified and analyzed in the mutants. These ERFs may play critical roles in ethylene response and salt tolerance. The mutant lines with decreased ethylene sensitivity exhibited enhanced salt tolerance, suggesting that ethylene sensitivity was closely related with salt tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The FASTQ files of raw data were uploaded to the NCBI Sequence Read Archive (SRA), and the SRA study accession is PRJNA549107.

Abbreviations

ABA:

Abscisic acid

ACC:

Aminocyclopropane-1-carboxylate

AUX:

Auxin

BGLU:

Beta-glucosidase

BR:

Brassinosteroid

CAB:

Chlorophyll a-b binding protein

CAT:

Catalase

CK:

Cytokinin

CTR:

Constitutive triple response

CYP:

Cytochrome P450

DEG:

Differentially expressed gene

EBF:

EIN3 binding F-box

EIL:

EIN3-like

EIN:

Ethylene insensitive

EMS:

Ethylmethylsulfonate

ERF:

Ethylene response factor

ET:

Ethylene

ETO:

Ethylene overproducer

ETR:

Ethylene response

FDR:

False discovery rate

GA:

Gibberellin

GO:

Gene ontology

JA:

Jasmonate

KEGG:

Kyoto encyclopedia of genes and genomes

MDA:

Malonic dialdehyde

NCED:

9-Cis-epoxycaroteniod dioxygenase

PER:

Peroxidase

POD:

Peroxidase

RABT:

Reference annotation based transcript

ROS:

Reactive oxygen species

SA:

Salicylic acid

SL:

Strigolactone

SOD:

Superoxide dismutase

THI:

Hydroxymethylpyrimidine

ZEP:

Zeaxanthin epoxidase

References

  • Abogadallah GM (2010) Antioxidative defense under salt stress. Plant Signal Behav 5(4):369–374

    CAS  PubMed  PubMed Central  Google Scholar 

  • Achard P, Cheng H, De Grauwe L, Decat J, Schoutteten H, Moritz T, Van Der Straeten D, Peng J, Harberd NP (2006) Integration of plant responses to environmentally activated phytohormonal signals. Science 311(5757):91–94

    CAS  PubMed  Google Scholar 

  • Baba SA, Vishwakarma RA, Ashraf N (2017) Functional characterization of CsBGlu12, a beta-glucosidase from Crocus sativus, provides insights into its role in abiotic stress through accumulation of antioxidant flavonols. J Biol Chem 292(11):4700–4713

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bahieldin A, Atef A, Edris S, Gadalla NO, Ali HM, Hassan SM, Al-Kordy MA, Ramadan AM, Makki RM, Al-Hajar AS, El-Domyati FM (2016) Ethylene responsive transcription factor ERF109 retards PCD and improves salt tolerance in plant. BMC Plant Biol 16(1):216

    PubMed  PubMed Central  Google Scholar 

  • Bari R, Jones JD (2009) Role of plant hormones in plant defence responses. Plant Mol Biol 69(4):473–488

    CAS  PubMed  Google Scholar 

  • Bleecker AB, Estelle MA, Somerville C, Kende H (1988) Insensitivity to ethylene conferred by a dominant mutation in Arabidopsis thaliana. Science 241(4869):1086–1089

    CAS  PubMed  Google Scholar 

  • Breiman A, Graur B (1995) Wheat evolution. Isr J Plant Sci 43:85–98

    Google Scholar 

  • Cao WH, Liu J, He XJ, Mu RL, Zhou HL, Chen SY, Zhang JS (2007) Modulation of ethylene responses affects plant salt-stress responses. Plant Physiol 143(2):707–719

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cao YR, Chen SY, Zhang JS (2008) Ethylene signaling regulates salt stress response: an overview. Plant Signal Behav 3(10):761–763

    PubMed  PubMed Central  Google Scholar 

  • Chen CW, Yang YW, Lur HS, Tsai YG, Chang MC (2006) A novel function of abscisic acid in the regulation of rice (Oryza sativa L.) root growth and development. Plant Cell Physiol 47(1):1–13

    PubMed  Google Scholar 

  • Dharmawardhana DP, Ellis BE, Carlson JE (1995) A beta-glucosidase from lodgepole pine xylem specific for the lignin precursor coniferin. Plant Physiol 107(2):331–339

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dong N, Liu X, Lu Y, Du L, Xu H, Liu H, Xin Z, Zhang Z (2010) Overexpression of TaPIEP1, a pathogen-induced ERF gene of wheat, confers host-enhanced resistance to fungal pathogen Bipolaris sorokiniana. Funct Integr Genom 10(2):215–226

    CAS  Google Scholar 

  • Dong W, Ai X, Xu F, Quan T, Liu S, Xia G (2012) Isolation and characterization of a bread wheat salinity responsive ERF transcription factor. Gene 511(1):38–45

    CAS  PubMed  Google Scholar 

  • Dubcovsky J, Dvorak J (2007) Genome plasticity a key factor in the success of polyploid wheat under domestication. Science 316(5833):1862–1866

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eulgem T, Rushton PJ, Robatzek S, Somssich IE (2000) The WRKY superfamily of plant transcription factors. Trends Plant Sci 5(5):199–206

    CAS  PubMed  Google Scholar 

  • Feldman M, Levy AA, Fahima T, Korol A (2012) Genomic asymmetry in allopolyploid plants: wheat as a model. J Exp Bot 63(14):5045–5059

    CAS  PubMed  Google Scholar 

  • Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y, Yamaguchi-Shinozaki K, Shinozaki K (2006) Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr Opin Plant Biol 9(4):436–442

    PubMed  Google Scholar 

  • Gill BS, Appels R, Botha-Oberholster AM, Buell CR, Bennetzen JL, Chalhoub B, Chumley F, Dvorak J, Iwanaga M, Keller B, Li W, McCombie WR, Ogihara Y, Quetier F, Sasaki T (2004) A workshop report on wheat genome sequencing: international genome research on wheat consortium. Genetics 168(2):1087–1096

    PubMed  PubMed Central  Google Scholar 

  • Gutterson N, Reuber TL (2004) Regulation of disease resistance pathways by AP2/ERF transcription factors. Curr Opin Plant Biol 7(4):465–471

    CAS  PubMed  Google Scholar 

  • Guzman P, Ecker JR (1990) Exploiting the triple response of Arabidopsis to identify ethylene-related mutants. Plant Cell 2(6):513–523

    CAS  PubMed  PubMed Central  Google Scholar 

  • Halkier BA, Gershenzon J (2006) Biology and biochemistry of glucosinolates. Annu Rev Plant Biol 57:303–333

    CAS  PubMed  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499

    CAS  PubMed  Google Scholar 

  • He B, Xu H, Chen J (1997) Effects of drought stress on the permeability of plasma membrane and anti-oxidation enzymes of the leaves of sweet potato. J Guangxi Agric Univ 16(4):287–290

    Google Scholar 

  • Horvath E, Szalai G, Janda T (2007) Induction of abiotic stress tolerance by salicylic acid signaling. J Plant Growth Regul 26(3):290–300

    CAS  Google Scholar 

  • Huang S, Sirikhachornkit A, Su X, Faris J, Gill B, Haselkorn R, Gornicki P (2002) Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploid wheat. Proc Natl Acad Sci USA 99(12):8133–8138

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jansson S (1999) A guide to the identification of the Lhc genes and their relatives in Arabidopsis. Trends Plant Sci 4:236–240

    CAS  PubMed  Google Scholar 

  • Jiang C, Belfield EJ, Cao Y, Smith JA, Harberd N (2013) An Arabidopsis soil-salinity-tolerance mutation confers ethylene-mediated enhancement of sodium/potassium homeostasis. Plant Cell 25(9):3535–3552

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kawaura K, Mochida K, Ogihara Y (2008) Genome-wide analysis for identification of salt-responsive genes in common wheat. Funct Integr Genomics 8(3):277–286

    CAS  PubMed  Google Scholar 

  • Ketudat Cairns JR, Esen A (2010) β-Glucosidases. Cell Mol Life Sci 67:3389–3405

    CAS  PubMed  Google Scholar 

  • Ku YS, Sintaha M, Cheung MY, Lam HM (2018) Plant hormone signaling crosstalks between biotic and abiotic stress responses. Int J Mol Sci 19(10):3206

    PubMed Central  Google Scholar 

  • Lei G, Shen M, Li ZG, Zhang B, Duan KX, Wang N, Cao YR, Zhang WK, Ma B, Ling HQ, Chen SY, Zhang J (2011) EIN2 regulates salt stress response and interacts with a MA3 domain-containing protein ECIP1 in Arabidopsis. Plant Cell Environ 34:1678–1692

    CAS  PubMed  Google Scholar 

  • Liu D, Han C, Deng X, Liu Y, Liu N, Yan Y (2019) Integrated physiological and proteomic analysis of embryo and endosperm reveals central salt stress response proteins during seed germination of winter wheat cultivar Zhengmai 366. BMC Plant Biol 19:29

    PubMed  PubMed Central  Google Scholar 

  • Loescher W, Chan ZL, Grumet R (2011) Options for developing salt-tolerant crops. HortScience 46:1085–1092

    Google Scholar 

  • Lu Y, Li Y, Zhang J, Xiao Y, Yue Y, Duan L, Zhang M, Li Z (2013) Overexpression of Arabidopsis molybdenum cofactor sulfurase gene confers drought tolerance in maize (Zea mays L.). PLoS ONE 8(1):e52126

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu W, Guo C, Li X, Duan W, Ma C, Zhao M, Gu J, Du X, Liu Z, Xiao K (2014) Overexpression of TaNHX3, a vacuolar Na+/H+ antiporter gene in wheat, enhances salt stress tolerance in tobacco by improving related physiological processes. Plant Physiol Biochem 76:17–28

    CAS  PubMed  Google Scholar 

  • Ma B, Chen SY, Zhang JS (2010) Ethylene signaling in rice. Chin Sci Bull 55:2204–2210

    CAS  Google Scholar 

  • Ma B, He SJ, Duan KX, Yin CC, Chen H, Yang C, Xiong Q, Song QX, Lu X, Chen HW, Zhang WK, Lu TG, Chen SY, Zhang JS (2013) Identification of rice ethylene-response mutants and characterization of MHZ7/OsEIN2 in distinct ethylene response and yield trait regulation. Mol Plant 6:1830–1848

    CAS  PubMed  Google Scholar 

  • Ma B, Yin CC, He SJ, Lu X, Zhang WK, Lu TG, Chen SY, Zhang JS (2014) Ethylene-induced inhibition of root growth requires abscisic acid function in rice (Oryza sativa L.) seedlings. PLoS Genet 10:1004701

    Google Scholar 

  • Ma Q, Dong CH (2020) Regulatory functions and molecular mechanisms of ethylene receptors and receptor-associated proteins in higher plants. Plant Growth Regul. https://doi.org/10.1007/s10725-10020-00674-10725

    Article  Google Scholar 

  • Ma Q, Zhang G, Hou L, Wang W, Hao J, Liu X (2015) Vitis vinifera VvWRKY13 is an ethylene biosynthesis-related transcription factor. Plant Cell Rep 34(9):1593–1603

    CAS  PubMed  Google Scholar 

  • Mallik S, Nayak M, Sahu BB, Panigrahi AK, Shaw BP (2011) Response of antioxidant enzymes to high NaCl concentration in different salt-tolerant plants. Biol Plant 55:191–195

    CAS  Google Scholar 

  • Morgan PW, Drew MC (1997) Ethylene and plant responses to stress. Physiol Plant 100:620–630

    CAS  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    CAS  PubMed  Google Scholar 

  • Niu CF, Wei W, Zhou QY, Tian AG, Hao YJ, Zhang WK, Ma B, Lin Q, Zhang ZB, Zhang JS, Chen SY (2012) Wheat WRKY genes TaWRKY2 and TaWRKY19 regulate abiotic stress tolerance in transgenic Arabidopsis plants. Plant Cell Environ 35(6):1156–1170

    CAS  PubMed  Google Scholar 

  • Park HY, Seok HY, Park BK, Kim SH, Goh CH, Lee BH, Lee CH, Moon YH (2008) Overexpression of Arabidopsis ZEP enhances tolerance to osmotic stress. Biochem Biophys Res Commun 375(1):80–85

    CAS  PubMed  Google Scholar 

  • Peng J, Li Z, Wen X, Li W, Shi H, Yang L, Zhu H, Guo H (2014) Salt induced stabilization of EIN3/EIL1 confers salinity tolerance by deterring ROS accumulation in Arabidopsis. PLoS Genet 10:e1004664

    PubMed  PubMed Central  Google Scholar 

  • Rong W, Qi L, Wang A, Ye X, Du L, Liang H, Xin Z, Zhang Z (2014) he ERF transcription factor TaERF3 promotes tolerance to salt and drought stresses in wheat. Plant Biotechnol J 12:468–479

    CAS  PubMed  Google Scholar 

  • Rouyi C, Baiya S, Lee SK, Mahong B, Jeon JS, Ketudat-Cairns JR, Ketudat-Cairns M (2014) Recombinant expression and characterization of the cytoplasmic rice β-glucosidase Os1BGlu4. PLoS ONE 9:e96712

    PubMed  PubMed Central  Google Scholar 

  • Schwartz E, Stasys R, Aebersold R, McGrath JM, Green BR, Pichersky E (1991) Sequence of a tomato gene encoding a third type of LHCII chlorophyll a/b-binding polypeptide. Plant Mol Biol 17:923–925

    CAS  PubMed  Google Scholar 

  • Silva J, Kim YJ, Sukweenadhi J, Rahimi S, Kwon WS, Yang DC (2016) Molecular characterization of 5-chlorophyll a/b-binding protein genes from Panax ginseng Meyer and their expression analysis during abiotic stresses. Photosynthetica 54(3):446–458

    CAS  Google Scholar 

  • Szczerba MW, Britto DT, Kronzucker HJ (2009) K+ transport in plants: physiology and molecular biology. J Plant Physiol 166:447–466

    CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    CAS  PubMed  PubMed Central  Google Scholar 

  • van Loon LC, Geraats BP, Linthorst HJ (2006) Ethylene as a modulator of disease resistance in plants. Trends Plant Sci 11(4):184–191

    PubMed  Google Scholar 

  • Wang C, Deng P, Chen L, Wang X, Ma H, Hu W, Yao N, Feng Y, Chai R, Yang G, He G (2013) A wheat WRKY transcription factor TaWRKY10 confers tolerance to multiple abiotic stresses in transgenic tobacco. PLoS ONE 8(6):e65120

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Wang F, Zheng F, Wang L, Pei H, Dong CH (2016) Ethylene-insensitive mutants of Nicotiana tabacum exhibit drought stress resistance. Plant Growth Regul 79(1):107–117

    CAS  Google Scholar 

  • Wang WQ, Liu SJ, Song SQ, Moller IM (2015) Proteomics of seed development, desiccation tolerance, germination and vigor. Lant Physiol Biochem 86:1–15

    CAS  Google Scholar 

  • Wang Y, Wang T, Li K, Li X (2008) Genetic analysis of involvement of ETR1 in plant response to salt and osmotic stress. Plant Growth Regul 54:261–269

    Google Scholar 

  • Xu ZS, Chen M, Li LC, Ma YZ (2011) Functions and application of the AP2/ERF transcription factor family in crop improvement. J Integr Plant Biol 53(7):570–585

    CAS  PubMed  Google Scholar 

  • Xu ZS, Xia LQ, Chen M, Cheng XG, Zhang RY, Li LC, Zhao YX, Lu Y, Ni ZY, Liu L, Qiu ZG (2007) Isolation and molecular characterization of the Triticum aestivum L ethylene-responsive factor 1 (TaERF1) that increases multiple stress tolerance. Plant Mol Biol 65(6):719–732

    CAS  PubMed  Google Scholar 

  • Yamaguchi T, Blumwald E (2005) Developing salt-tolerant crop plants: challenges and opportunities. Trends Plant Sci 10(12):615–620

    CAS  PubMed  Google Scholar 

  • Yang C, Ma B, He SJ, Xiong Q, Duan KX, Yin CC, Chen H, Lu X, Chen SY, Zhang JS (2015) Maohuzi6/ethylene insensitive3-like1 and ethylene insensitive3-like2 regulate ethylene response of roots and coleoptiles and negatively affect salt tolerance in rice. Plant Physiol 169(1):148–165

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yousfi F, Makhloufi E, Marande W, Ghorbel AW, Bouzayen M, Berges H (2016) Comparative analysis of WRKY genes potentially involved in salt stress responses in Triticum turgidum L. ssp. durum. Front Plant Sci 7:2034

    PubMed  Google Scholar 

  • Zhang J, Yu H, Zhang Y, Wang Y, Li M, Zhang J, Duan L, Zhang M, Li Z (2016) Increased abscisic acid levels in transgenic maize overexpressing AtLOS5 mediated root ion fluxes and leaf water status under salt stress. J Exp Bot 67(5):1339–1355

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang JS, Wang YQ, Song JN, Xu JP, Yang HB (2019) Effect of aspartic acid on physiological characteristics and gene expression of salt exclusion in Tartary buckwheat under salt stress. J Plant Biochem Biotechnol 29:94–101

    Google Scholar 

  • Zhang L, Liu P, Wu J, Qiao L, Zhao G, Jia J, Gao L, Wang J (2020) Identification of a novel ERF gene, TaERF8, associated with plant height and yield in wheat. BMC Plant Biol 20:263

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Tan J, Guo Z, Lu S, He S, Shu W, Zhou B (2009) Increased abscisic acid levels in transgenic tobacco over-expressing 9 cis-epoxycarotenoid dioxygenase influence H2O2 and NO production and antioxidant defences. Plant Cell Environ 32(5):509–519

    PubMed  Google Scholar 

  • Zheng Y, Jiao C, Sun H, Rosli HG, Pombo MA, Zhang P, Banf M, Dai X, Martin GB, Giovannoni JJ, Zhao PX, Rhee SY, Fei Z (2016) iTAK: a program for genome-wide prediction and classification of plant transcription factors, transcriptional regulators, and protein kinases. Mol Plant 9:1667–1670

    CAS  PubMed  Google Scholar 

  • Zhu X, Qi L, Liu X, Cai S, Xu H, Huang R, Li J, Wei X, Zhang Z (2014) The wheat ethylene response factor transcription factor PATHOGEN-INDUCED ERF1 mediates host responses to both the necrotrophic pathogen Rhizoctonia cerealis and freezing stresses. Plant Physiol 164:1499–1514

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zou Q (2000) Experimental guide to plant physiology. China Agricultural Press, Beijing

    Google Scholar 

  • Zou Z, Wang R, Wang R, Yang S, Yang Y (2018) Genome-wide identification, phylogenetic analysis, and expression profiling of the BBX family genes in pear. J Hortic Sci Biotech 93(1):37–50

    CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Guoqing Song (Michigan State University) for his revision of the manuscript. Contributions by Wenqiang Pan, Yang Xue, Jiacai Chen, Jingli Yang, Jinnan Song, Yaqi Wang, Xuehua Liu, Zhongxin Wang, Longfei Qiao, Yuhang Zhao, and the others for mutagenesis and plant growth are greatly appreciated.

Funding

This work was supported by Shandong Agricultural Variety Project (2019LZGC015), Shandong Natural Science Foundation (ZR2019MC061), National Natural Science Foundation of China (Grant No. 31870255) to CHD, and National Natural Science Foundation of China (Grant No. 31900247) to QM.

Author information

Authors and Affiliations

Authors

Contributions

QM worked on transcriptome analysis, statistical analysis, and writing of first version of the manuscript. HZ contributed on EMS mutagenesis and physiological experiments. XS and CS worked on qRT-PCR analysis. YY worked on mutant screening. CHD participated in design of the experiments and revision of the manuscript. All authors have read and approved the manuscript.

Corresponding author

Correspondence to Chun-Hai Dong.

Ethics declarations

Conflict of interest

We declare that the authors of this paper have no conflict of interest.

Additional information

Communicated by Longbiao Guo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Germination rates of the EMS-mutagenized wheat seeds. Supplementary material 1 (TIFF 14,573 kb)

Supplementary material 1 (DOCX 17 kb)

The annotation information of DEGs in the multiple comparisons. Supplementary material 1 (XLS 1755 kb)

The GO annotation of DEGs in the multiple comparisons. Supplementary material 1 (XLS 156 kb)

The KEGG annotation of DEGs in the multiple comparisons. Supplementary material 1 (XLS 85 kb)

The sequence templates of DEGs used in qRT-PCR verification. Supplementary material 1 (DOCX 20 kb)

Supplementary material 1 (DOCX 18 kb)

10725_2021_694_MOESM8_ESM.docx

The CDS sequences and full DNA sequences of ERFs in response to ethylene and salt stress. Supplementary material 1 DOCX 23 kb)

Supplementary material 1 (DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Q., Zhou, H., Sui, X. et al. Generation of new salt-tolerant wheat lines and transcriptomic exploration of the responsive genes to ethylene and salt stress. Plant Growth Regul 94, 33–48 (2021). https://doi.org/10.1007/s10725-021-00694-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-021-00694-9

Keywords

Navigation