Skip to main content

Overview of Methods for Assessing Salinity and Drought Tolerance of Transgenic Wheat Lines

  • Protocol
  • First Online:
Wheat Biotechnology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1679))

Abstract

Salinity and drought are interconnected, causing phenotypic, physiological, biochemical, and molecular changes in a cell. These stresses are the major factors adversely affecting growth and productivity in cereals. Genetic engineering methods have advanced to enable development of genotypes with improved salinity and drought tolerance. The resulting transgenic plant produces a group of progenies which includes moderate to high-stress tolerant transgenic lines. Development of reproducible screening methods to identify high-stress tolerant germplasm under laboratory, greenhouse, or field conditions is must. Further, field level demonstration of improved phenotypes and yield under salinity and drought stress conditions is both challenging and expensive. Fast and efficient screening techniques that could be used to screen transgenic lines under greenhouse conditions, for salt and drought stress tolerance, may contribute toward the identification of promising lines for field conditions. This chapter provides information on various approaches which can be developed during different stages of plant development for selecting salinity and drought tolerant plants in cereals, especially wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ray DK, Ramankutty N, Mueller ND, West PC, Foley JA (2012) Recent patterns of crop yield growth and stagnation. Nat Commun 3:1293

    Article  PubMed  Google Scholar 

  2. Joshi R, Karan R, Singla-Pareek SL, Pareek A (2016) Ectopic expression of Pokkali phosphoglycerate kinase-2 (OsPGK2-P) improves yield in tobacco plants under salinity stress. Plant Cell Rep 35(1):27–41

    Article  CAS  PubMed  Google Scholar 

  3. Ngara R, Ndimba BK (2014) Understanding the complex nature of salinity and drought-stress response in cereals using proteomics technologies. Proteomics 14(4–5):611–621

    Article  CAS  PubMed  Google Scholar 

  4. Hao P, Zhu J, Gu A, Lv D, Ge P, Chen G, Li X, Yan Y (2015) An integrative proteome analysis of different seedling organs in tolerant and sensitive wheat cultivars under drought stress and recovery. Proteomics 15(9):1544–1563

    Article  CAS  PubMed  Google Scholar 

  5. Joshi R, Ramanarao MV, Lee S, Kato N, Baisakh N (2014) Ectopic expression of ADP ribosylation factor 1 (SaARF1) from smooth cordgrass (Spartina alterniflora Loisel) confers drought and salt tolerance in transgenic rice and Arabidopsis. Plant Cell Tissue Organ Cult 117(1):17–30

    Article  CAS  Google Scholar 

  6. Joshi R, Sahoo KK, Tripathi AK, Kumar R, Gupta BK, Pareek A, Singla-Pareek SL (2017) Knockdown of an inflorescence meristem-specific cytokinin oxidase-OsCKX2 in rice reduces yield penalty under salinity stress condition. Plant Cell Environ. doi:10.1111/pce.12947

  7. Almeida DM, Almadanim MC, Lourenço T, Abreu IA, Saibo NJ, Oliveira MM (2016) Screening for abiotic stress tolerance in rice: salt, cold, and drought. Methods Mol Biol 1398:155–182

    Article  PubMed  Google Scholar 

  8. Kumari S, Joshi R, Singh K, Roy S, Tripathi AK, Singh P, Singla-Pareek SL, Pareek A (2015) Expression of a cyclophilin OsCyp2-P isolated from a salt-tolerant landrace of rice in tobacco alleviates stress via ion homeostasis and limiting ROS accumulation. Funct Integr Genomics 15(4):395–412

    Article  CAS  PubMed  Google Scholar 

  9. Kushwaha HR, Joshi R, Pareek A, Singla-Pareek SL (2016) MATH-domain family shows response toward abiotic stress in Arabidopsis and rice. Front Plant Sci 7:923

    Article  PubMed  PubMed Central  Google Scholar 

  10. Pfeiffer WH, Trethowan RM, Van Ginkel M, Ortiz MI, Rajaram S (2005) Breeding for abiotic stress tolerance in wheat. In: Ashraf M, Harris PJC (eds) Abiotic stresses: plant resistance through breeding and molecular approaches. The Haworth Press, New York, pp 401–489

    Google Scholar 

  11. Nezhadahmadi A, Prodhan ZH, Faruq G (2013) Drought tolerance in wheat. Sci World J. Article ID: 610721

    Google Scholar 

  12. Pittock AB (ed) (2003) Climate change: an Australian guide to the science and potential impacts. Australian Greenhouse Office, Canberra, p 239

    Google Scholar 

  13. Joshi R, Wani SH, Singh B, Bohra A, Dar ZA, Lone AA, Pareek A, Singla-Pareek SL (2016) Transcription factors and plants response to drought stress: current understanding and future directions. Front Plant Sci 7:1029

    Article  PubMed  PubMed Central  Google Scholar 

  14. Daryanto S, Wang L, Jacinthe PA (2016) Global synthesis of drought effects on maize and wheat production. PLoS One 11(5):e0156362

    Article  PubMed  PubMed Central  Google Scholar 

  15. Farooq M, Basra SM, Wahid A, Cheema ZA, Cheema MA, Khaliq A (2008) Physiological role of exogenously applied glycinebetaine to improve drought tolerance in fine grain aromatic rice (Oryza sativa L.) J Agron Crop Sci 194(5):325–333

    Article  CAS  Google Scholar 

  16. Sahoo KK, Tripathi AK, Pareek A, Singla-Pareek SL (2013) Taming drought stress in rice through genetic engineering of transcription factors and protein kinases. Plant Stress 7(1):60–72

    Google Scholar 

  17. Peng Z, Wang M, Li F, Lv H, Li C, Xia G (2009) A proteomic study of the response to salinity and drought stress in an introgression strain of bread wheat. Mol Cell Proteomics 8(12):2676–2686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Quan W, Liu X, Wang H, Chan Z (2016) Comparative physiological and transcriptional analyses of two contrasting drought tolerant alfalfa varieties. Front Plant Sci 6:1256

    Article  PubMed  PubMed Central  Google Scholar 

  19. Mwadzingeni L, Shimelis H, Dube E, Laing MD, Tsilo TJ (2016) Breeding wheat for drought tolerance: progress and technologies. J Integr Agric 15(5):935–943

    Article  Google Scholar 

  20. Szira F, Balint AF, Börner A, Galiba G (2008) Evaluation of drought-related traits and screening methods at different developmental stages in spring barley. J Agron Crop Sci 194(5):334–342

    Article  Google Scholar 

  21. Fehér-Juhász E, Majer P, Sass L, Lantos C, Csiszár J, Turóczy Z, Mihály R, Mai A, Horváth GV, Vass I, Dudits D (2014) Phenotyping shows improved physiological traits and seed yield of transgenic wheat plants expressing the alfalfa aldose reductase under permanent drought stress. Acta Physiol Plant 36(3):663–673

    Article  Google Scholar 

  22. Araus JL, Cairns JE (2014) Field high-throughput phenotyping: the new crop breeding frontier. Trends Plant Sci 19(1):52–61

    Article  CAS  PubMed  Google Scholar 

  23. Reynolds M, Tattaris M, Cossani CM, Ellis M, Yamaguchi-Shinozaki K, Saint Pierre C (2015) Exploring genetic resources to increase adaptation of wheat to climate change. In: Advances in wheat genetics: from genome to field. Springer, Japan, pp 355–368

    Chapter  Google Scholar 

  24. Honsdorf N, March TJ, Berger B, Tester M, Pillen K (2014) High-throughput phenotyping to detect drought tolerance QTL in wild barley introgression lines. PLoS One 9(5):e97047

    Article  PubMed  PubMed Central  Google Scholar 

  25. Rahman H, Ramanathan V, Nallathambi J, Duraialagaraja S, Muthurajan R (2016) Over-expression of a NAC67 transcription factor from finger millet (Eleusine coracana L.) confers tolerance against salinity and drought stress in rice. BMC Biotechnol 16(1):35

    Article  PubMed  PubMed Central  Google Scholar 

  26. Soltani A, Gholipoor M, Zeinali E (2006) Seed reserve utilization and seedling growth of wheat as affected by drought and salinity. Environ Exp Bot 55(1):195–200

    Article  Google Scholar 

  27. Woodrow P, Ciarmiello LF, Annunziata MG, Pacifico S, Iannuzzi F, Mirto A, D’Amelia L, Dell’Aversana E, Piccolella S, Fuggi A, Carillo P (2017) Durum wheat seedling responses to simultaneous high light and salinity involve a fine reconfiguration of amino acids and carbohydrate metabolism. Physiol Plant 159(3):290–312

    Article  CAS  PubMed  Google Scholar 

  28. Shelden MC, Roessner U (2013) Advances in functional genomics for investigating salinity stress tolerance mechanisms in cereals. Front Plant Sci 4:123

    Article  PubMed  PubMed Central  Google Scholar 

  29. Bewley JD, Black M (1982) Physiology and biochemistry of seeds in relation to germination: 2. Viability, dormancy and environmental control. Springer-Verlag, Berlin

    Book  Google Scholar 

  30. Takahashi F, Tilbrook J, Trittermann C, Berger B, Roy SJ, Seki M, Shinozaki K, Tester M (2015) Comparison of leaf sheath transcriptome profiles with physiological traits of bread wheat cultivars under salinity stress. PLoS One 10(8):e0133322

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kumari S, nee Sabharwal VP, Kushwaha HR, Sopory SK, Singla-Pareek SL, Pareek A (2009) Transcriptome map for seedling stage specific salinity stress response indicates a specific set of genes as candidate for saline tolerance in Oryza sativa L. Funct Intger Genomics 9(1):109

    Article  CAS  Google Scholar 

  32. Joshi R, Prashat R, Sharma PC, Singla-Pareek SL, Pareek A (2016) Physiological characterization of gamma-ray induced mutant population of rice to facilitate biomass and yield improvement under salinity stress. Indian J Plant Physiol 21(4):545–555

    Article  CAS  Google Scholar 

  33. Pareek A, Singla SL, Grover A (1998) Proteins alterations associated with salinity, desiccation, high and low temperature stresses and abscisic acid application in seedlings of Pusa 169, a high-yielding rice (Oryza sativa L.) cultivar. Curr Sci 75(10):1023–1035

    CAS  Google Scholar 

  34. Nutan KK, Kushwaha HR, Singla-Pareek SL, Pareek A (2017) Transcription dynamics of Saltol QTL localized genes encoding transcription factors, reveals their differential regulation in contrasting genotypes of rice. Funct Integr Genomics 17(1):69–83

    Article  CAS  PubMed  Google Scholar 

  35. Joshi R, Shukla A, Sairam RK (2011) In vitro screening of rice genotypes for drought tolerance using polyethylene glycol. Acta Physiol Plant 33(6):2209

    Article  CAS  Google Scholar 

  36. Tripathi AK, Pareek A, Singla-Pareek SL (2016) A NAP-Family histone chaperone functions in abiotic stress response and adaptation. Plant Physiol 171(4):2854–2868

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Soda N, Sharan A, Gupta BK, Singla-Pareek SL, Pareek A (2016) Evidence for nuclear interaction of a cytoskeleton protein (OsIFL) with metallothionein and its role in salinity stress tolerance. Sci Rep 6:34762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Termaat A, Passioura JB, Munns R (1985) Shoot turgor does not limit shoot growth of NaCl-affected wheat and barley. Plant Physiol 77:869–872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nawaz A, Farooq M, Cheema SA, Yasmeen A, Wahid A (2013) Stay green character at grain filling ensures resistance against terminal drought in wheat. Int J Agric Biol 15:1272–1276

    Google Scholar 

  40. Ye W, Hu S, Wu L, Ge C, Cui Y, Chen P, Xu J, Dong G, Guo L, Qian Q (2017) Fine mapping a major QTL qFCC7L for chlorophyll content in rice (Oryza sativa L.) cv. PA64s. Plant Growth Regul 81(1):81–90

    Article  CAS  Google Scholar 

  41. Wang Q, Xie W, Xing H, Yan J, Meng X, Li X, Fu X, Xu J, Lian X, Yu S, Xing Y (2015) Genetic architecture of natural variation in rice chlorophyll content revealed by a genome-wide association study. Mol Plant 8(6):946–957

    Article  CAS  PubMed  Google Scholar 

  42. Zivcak M, Brestic M, Kalaji HM (2014) Photosynthetic responses of sun-and shade-grown barley leaves to high light: is the lower PSII connectivity in shade leaves associated with protection against excess of light? Photosynth Res 119(3):339–354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ling Q, Huang W, Jarvis P (2011) Use of a SPAD-502 meter to measure leaf chlorophyll concentration in Arabidopsis thaliana. Photosynth Res 107(2):209–214

    Article  CAS  PubMed  Google Scholar 

  44. Wehr R, Commane R, Munger JW, McManus JB, Nelson DD, Zahniser MS, Saleska SR, Wofsy SC (2017) Dynamics of canopy stomatal conductance, transpiration, and evaporation in a temperate deciduous forest, validated by carbonyl sulfide uptake. Biogeosciences 14(2):389

    Article  Google Scholar 

  45. Lawson T, von Caemmerer S, Baroli I (2010) Photosynthesis and stomatal behaviour. In: Progress in botany. Springer, Berlin, Heidelberg, pp 265–304

    Google Scholar 

  46. Vico G, Manzoni S, Palmroth S, Katul G (2011) Effects of stomatal delays on the economics of leaf gas exchange under intermittent light regimes. New Phytol 192(3):640–652

    Article  CAS  PubMed  Google Scholar 

  47. Drake PL, Froend RH, Franks PJ (2013) Smaller, faster stomata: scaling of stomatal size, rate of response, and stomatal conductance. J Exp Bot 64(2):495–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Farooq M, Hussain M, Siddique KH (2014) Drought stress in wheat during flowering and grain-filling periods. Crit Rev Plant Sci 33(4):331–349

    Article  CAS  Google Scholar 

  49. Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA (2009) Plant drought stress: effects, mechanisms and management. Agron Sustain Dev 29:185–212

    Article  Google Scholar 

  50. Dorion S, Lalonde S, Saini HS (1996) Induction of male sterility in wheat (Triticum aestivum L.) by meiotic-stage water deficit is preceded by a decline in invertase activity and changes in carbohydrate metabolism in anthers. Plant Physiol 111:137–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Foulkes MJ, Sylvester-Bradley R, Weightman R, Snape JW (2007) Identifying physiological traits associated with improved drought resistance in winter wheat. Field Crop Res 103:11–24

    Article  Google Scholar 

  52. Lakra N, Kaur C, Anwar K, Singla-Pareek SL, Pareek A (2017) Proteomics of contrasting rice genotypes: identification of potential targets for raising crops for saline environment. Plant Cell Environ. doi:10.1111/pce.12946

  53. Khanna-Chopra R, Nutan KK, Pareek A (2013) Regulation of leaf senescence: role of reactive oxygen species. In: Plastid development in leaves during growth and senescence. Springer, Netherlands, pp 393–416

    Chapter  Google Scholar 

  54. Das P, Nutan KK, Singla-Pareek SL, Pareek A (2015) Understanding salinity responses and adopting ‘omics-based’ approaches to generate salinity tolerant cultivars of rice. Front Plant Sci 6:712

    PubMed  PubMed Central  Google Scholar 

  55. Lakra N, Nutan KK, Das P, Anwar K, Singla-Pareek SL, Pareek A (2015) A nuclear-localized histone-gene binding protein from rice (OsHBP1b) functions in salinity and drought stress tolerance by maintaining chlorophyll content and improving the antioxidant machinery. J Plant Physiol 176:36–46

    Article  CAS  PubMed  Google Scholar 

  56. Demidchik V, Straltsova D, Medvedev SS, Pozhvanov GA, Sokolik A, Yurin V (2014) Stress-induced electrolyte leakage: the role of K+-permeable channels and involvement in programmed cell death and metabolic adjustment. J Exp Bot 65(5):1259–1270

    Article  CAS  PubMed  Google Scholar 

  57. Munns R, Wallace PA, Teakle NL, Colmer TD (2010) Measuring soluble ion concentrations (Na+, K+, Cl−) in salt-treated plants. Methods Mol Biol 639:371–382

    Article  CAS  PubMed  Google Scholar 

  58. Welz B, Sperling M (2008) Atomic absorption spectrometry. John Wiley & Sons, New York

    Google Scholar 

  59. Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39(1):205–207

    Article  CAS  Google Scholar 

  60. Kumar G, Purty RS, Sharma MP, Singla-Pareek SL, Pareek A (2009) Physiological responses among Brassica species under salinity stress show strong correlation with transcript abundance for SOS pathway-related genes. J Plant Physiol 166(5):507–520

    Article  CAS  PubMed  Google Scholar 

  61. Lafitte R (2002) Relationship between leaf relative water content during reproductive stage water deficit and grain formation in rice. Field Crops Res 76(2):165–174

    Article  Google Scholar 

  62. Krishnamurthy LV, Vadez D, Jyotsna M, Serraj R (2007) Variation in transpiration efficiency and its related traits in a groundnut (Arachis hypogaea L.) mapping population. Field Crop Res 103:189–197

    Article  Google Scholar 

  63. Medrano H, Tomás M, Martorell S, Flexas J, Hernández E, Rosselló J, Pou A, Escalona JM, Bota J (2015) From leaf to whole-plant water use efficiency (WUE) in complex canopies: limitations of leaf WUE as a selection target. Crop J 3(3):220–228

    Article  Google Scholar 

  64. Whalley WR, Watts CW, Gregory AS, Mooney SJ, Clark LJ, Whitmore AP (2008) The effect of soil strength on the yield of wheat. Plant Soil 306(1–2):237

    Article  CAS  Google Scholar 

  65. Qiu Y, Fu B, Wang J, Chen L (2001) Soil moisture variation in relation to topography and land use in a hillslope catchment of the Loess Plateau, China. J Hydrol 240(3):243–263

    Article  Google Scholar 

  66. Mooney SJ, Pridmore TP, Helliwell J, Bennett MJ (2012) Developing X-ray computed tomography to non-invasively image 3-D root systems architecture in soil. Plant Soil 352(1–2):1–22

    Article  CAS  Google Scholar 

  67. Holzman ME, Rivas R, Piccolo MC (2014) Estimating soil moisture and the relationship with crop yield using surface temperature and vegetation index. Int J Appl Earth Observ Geoinform 28:181–192

    Article  Google Scholar 

  68. Boulet G, Chehbouni A, Gentine P, Duchemin B, Ezzahar J, Hadria R (2007) Monitoring water stress using time series of observed to unstressed surface temperature difference. Agr Forest Meteorol 146(3):159–172

    Article  Google Scholar 

  69. Mallick K, Bhattacharya BK, Patel NK (2009) Estimating volumetric surface moisture content for cropped soils using a soil wetness index based on surface temperature and NDVI. Agr Forest Meteorol 149(8):1327–1342

    Article  Google Scholar 

  70. Han Y, Wang Y, Zhao Y (2010) Estimating soil moisture conditions of the greater Changbai Mountains by land surface temperature and NDVI. IEEE Trans Geosci Remote Sens 48(6):2509–2515

    Article  Google Scholar 

  71. Tracy SR, Roberts JA, Black CR, McNeill A, Davidson R, Mooney SJ (2010) The X-factor: visualizing undisturbed root architecture in soils using X-ray computed tomography. J Exp Bot 61(2):311–313

    Article  CAS  PubMed  Google Scholar 

  72. Zappala S, Mairhofer S, Tracy S, Sturrock CJ, Bennett M, Pridmore T, Mooney SJ (2013) Quantifying the effect of soil moisture content on segmenting root system architecture in X-ray computed tomography images. Plant Soil 370(1–2):35–45

    Article  CAS  Google Scholar 

Download references

Acknowledgments

R.J. acknowledges Dr. D.S. Kothari Postdoctoral Fellowship from University Grant Commission, Government of India. A.P. would like to acknowledge the financial support received from UGC-RNW and UOE-II from Jawaharlal Nehru University, JNU (India). Research in the lab of A.P. also supported from funds received from International Atomic Energy Agency (Vienna), India-NWO, DBT and Indo-US Science and Technology Forum (IUSSTF), New, Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashwani Pareek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Joshi, R., Anwar, K., Das, P., Singla-Pareek, S.L., Pareek, A. (2017). Overview of Methods for Assessing Salinity and Drought Tolerance of Transgenic Wheat Lines. In: Bhalla, P., Singh, M. (eds) Wheat Biotechnology. Methods in Molecular Biology, vol 1679. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7337-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7337-8_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7335-4

  • Online ISBN: 978-1-4939-7337-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics