Skip to main content
Log in

Expression of AtGA2ox1 enhances drought tolerance in maize

  • Original Paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Drought is a major limiting factor to maize (Zea mays L.) yield. Plant hormones, including gibberellins (GAs), play important roles in plant response to drought stress. In previous studies, significant reductions in GAs levels have been reported under drought stress. In maize, GA content is correlated to drought tolerance, but the molecular mechanism remains unclear. In the present study, AtG2ox1, a member of the GA2ox family with a clear function, was used to create GA deficiency maize. The transgenic maize had a higher chlorophyll content and faster growth rate, when compared to the wild type (WT) plants, under drought stress in a greenhouse. The physiological and biochemical test results revealed that transgenic maize had decreased levels of GA1 and malondialdehyde (MDA), and increased content of proline and soluble sugars, and antioxidant enzyme activities, when compared to the WT. Furthermore, the transcriptomic analysis revealed that some differentially expressed genes involved in transcription factors correlated to drought stress and abiotic stress responses, and that signaling was enriched. All these results reveal the possible molecular mechanism of GA regulation in drought tolerance, in which the overexpression of AtGA2ox1 altered the expression of multiple genes correlated to the internal antioxidant system and maintenance of cell osmotic potential. The present study demonstrates that the overexpression of AtGA2ox1 could control GA content and improve drought tolerance in transgenic maize. Furthermore, this strategy represents a novel approach to address drought tolerance in maize breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Achard P, Renou JP, Berthomé R, Harberd NP, Genschik P (2008a) Plant DELLAs restrain growth and promote survival of adversity by reducing the levels of reactive oxygen species. Curr Biol 18(9):656–660

    Article  CAS  PubMed  Google Scholar 

  • Achard P, Gong F, Cheminant S, Alioua M, Hedden P, Genschik P (2008b) The cold-inducible CBF1 factor-dependent signaling pathway modulates the accumulation of the growth-repressing DELLA proteins via its effect on gibberellin metabolism. Plant Cell 20(8):2117–2129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agharkar M, Lomba P, Altpeter F, Zhang H, Lange T (2007) Stable expression of AtGA2ox1 in a low-input turfgrass (Paspalum notatum Flugge) reduces bioactive gibberellin levels and improves turf quality under field conditions. Plant Biotechnol J 5(6):791–801

    Article  CAS  PubMed  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39(1):205–207

    Article  CAS  Google Scholar 

  • Beers RF, Sizer IW (1952) A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem 195(1):133–140

    CAS  PubMed  Google Scholar 

  • Biemelt S, Tschiersch H, Sonnewald U (2004) Impact of altered gibberellin metabolism on biomass accumulation, lignin biosynthesis, and photosynthesis in transgenic tobacco plants. Plant Physiol 135(1):254–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Nolan TM, Ye H, Zhang M, Tong H, Xin P et al (2017) Arabidopsis WRKY46, WRKY54, and WRKY70 transcription factors are involved in brassinosteroid-regulated plant growth and drought responses. Plant Cell 29(6):1425–1439

    CAS  PubMed  PubMed Central  Google Scholar 

  • Colebrook EH, Thomas SG, Phillips AL, Hedden P (2014) The role of gibberellin signalling in plant responses to abiotic stress. J Exp Biol 217(1):67–75

    Article  CAS  PubMed  Google Scholar 

  • Dijkstra C, Adams E, Bhattacharya A, Page AF, Anthony P, Kourmpetli S et al (2008) Over-expression of a gibberellin 2-oxidase gene from Phaseolus coccineus L. enhances gibberellin inactivation and induces dwarfism in Solanum species. Plant Cell Rep 27(3):463–470

    Article  CAS  PubMed  Google Scholar 

  • Edmeades GO, Cooper M, Lafitte R, Zinselmeier C, Ribaut JM, Habben JE et al (2000) Abiotic stresses and staple crops. In: Crop science: progress and prospects (no. CIS-4429). CIMMYT

  • FAO (2010) FAOSTAT statistical database of the Food and Agriculture Organization of the United Nations. FAO, Rome. http://faostat.fao.org. Accessed 14 July 2011

  • Gallego-Bartolome J, Alabadi D, Blazquez MA (2011) DELLA-induced early transcriptional changes during etiolated development in Arabidopsis thaliana. PLoS ONE 6:e23918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilbert HS, Stump DD, Roth EF Jr (1984) A method to correct for errors caused by generation of interfering compounds during erythrocyte lipid peroxidation. Anal Biochem 137(2):282–286

    Article  CAS  PubMed  Google Scholar 

  • Guo M, Liu JH, Ma X, Luo DX, Gong ZH, Lu MH (2016) The plant heat stress transcription factors (HSFs): structure, regulation, and function in response to abiotic stresses. Front Plant Sci 7:114

    PubMed  PubMed Central  Google Scholar 

  • Han F, Zhu B (2011) Evolutionary analysis of three gibberellin oxidase genes in rice, Arabidopsis, and soybean. Gene 473(1):23–35

    Article  CAS  PubMed  Google Scholar 

  • Hedden P, Phillips AL (2000) Gibberellin metabolism: new insights revealed by the genes. Trends Plant Sci 5(12):523–530

    Article  CAS  PubMed  Google Scholar 

  • Hodges DM, DeLong JM, Forney CF, Prange RK (1999) Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207(4):604–611

    Article  CAS  Google Scholar 

  • Huang J, Tang D, Shen Y, Qin B, Hong L, You A, Cheng Z (2010a) Activation of gibberellin 2-oxidase 6 decreases active gibberellin levels and creates a dominant semi-dwarf phenotype in rice (Oryza sativa L.). J Genet Genomics 37(1):23–36

    Article  CAS  PubMed  Google Scholar 

  • Huang XS, Liu JH, Chen XJ (2010b) Overexpression of PtrABF gene, a bZIP transcription factor isolated from Poncirus trifoliata, enhances dehydration and drought tolerance in tobacco via scavenging ROS and modulating expression of stress-responsive genes. BMC Plant Biol 10(1):230

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ishida Y, Hiei Y, Komari T (2007) Agrobacterium-mediated transformation of maize. Nat Protoc 2(7):1614

    Article  CAS  PubMed  Google Scholar 

  • Lee DJ, Zeevaart JA (2005) Molecular cloning of GA 2-oxidase3 from spinach and its ectopic expression in Nicotiana sylvestris. Plant Physiol 138(1):243–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee J, He K, Stolc V, Lee H, Figueroa P, Gao Y, Tongprasit W, Zhao H, Lee I, Deng XW (2007) Analysis of transcription factor HY5 genomic binding sites revealed its hierarchical role in light regulation of development. Plant Cell 19:731–749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu HC, Liao HT, Charng YY (2011) The role of class A1 heat shock factors (HSFA1s) in response to heat and other stresses in Arabidopsis. Plant Cell Environ 34(5):738–751

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  • Lo SF, Yang SY, Chen KT, Hsing YI, Zeevaart JA, Chen LJ, Yu SM (2008) A novel class of gibberellin 2-oxidases control semidwarfism, tillering, and root development in rice. Plant Cell 20(10):2603–2618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lo SF, Ho THD, Liu YL, Jiang MJ, Hsieh KT, Chen KT, Yu LC et al (2017) Ectopic expression of specific GA2 oxidase mutants promotes yield and stress tolerance in rice. Plant Biotechnol J 15(7):850–864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma H, Wang C, Yang B, Cheng H, Wang Z, Mijiti A et al (2016) CarHSFB2, a class B heat shock transcription factor, is involved in different developmental processes and various stress responses in chickpea (Cicer arietinum L.). Plant Mol Biol Report 34(1):1–14

    Article  CAS  Google Scholar 

  • Magome H, Yamaguchi S, Hanada A, Kamiya Y, Oda K (2004) Dwarf and delayed-flowering 1, a novel Arabidopsis mutant deficient in gibberellin biosynthesis because of overexpression of a putative AP2 transcription factor. Plant J 37(5):720–729

    Article  CAS  PubMed  Google Scholar 

  • Magome H, Yamaguchi S, Hanada A, Kamiya Y, Oda K (2008) The DDF1 transcriptional activator upregulates expression of a gibberellin-deactivating gene, GA2ox7, under high-salinity stress in Arabidopsis. Plant J 56(4):613–626

    Article  CAS  PubMed  Google Scholar 

  • Moore K, Roberts LJ (1998) Measurement of lipid peroxidation. Free Radic Res 28(6):659–671

    Article  CAS  PubMed  Google Scholar 

  • Nelissen H, Sun XH, Rymen B, Jikumaru Y, Kojima M, Takebayashi Y et al (2018) The reduction in maize leaf growth under mild drought affects the transition between cell division and cell expansion and cannot be restored by elevated gibberellic acid levels. Plant Biotechnol J 16(2):615–627

    Article  CAS  PubMed  Google Scholar 

  • Ogawa D, Yamaguchi K, Nishiuchi T (2007) High-level overexpression of the Arabidopsis HsfA2 gene confers not only increased thermotolerance but also salt/osmotic stress tolerance and enhanced callus growth. J Exp Bot 58(12):3373–3383

    Article  CAS  PubMed  Google Scholar 

  • Oh E, Yamaguchi S, Hu J, Yusuke J, Jung B, Paik I et al (2007) PIL5, a phytochrome-interacting bHLH protein, regulates gibberellin responsiveness by binding directly to the GAI and RGA promoters in Arabidopsis seeds. Plant Cell 19(4):1192–1208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park HY, Seok HY, Woo DH, Lee SY, Tarte VN, Lee EH et al (2011) AtERF71/HRE2 transcription factor mediates osmotic stress response as well as hypoxia response in Arabidopsis. Biochem Biophys Res Commun 414(1):135–141

    Article  CAS  PubMed  Google Scholar 

  • Qi T, Huang H, Wu D, Yan J, Qi Y, Song S, Xie D (2014) Arabidopsis DELLA and JAZ proteins bind the WD-Repeat/bHLH/MYB complex to modulate gibberellin and jasmonate signaling synergy. Plant Cell 26:1118–1133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakamoto T, Miura K, Itoh H, Tatsumi T, Ueguchi-Tanaka M, Ishiyama K et al (2004) An overview of gibberellin metabolism enzyme genes and their related mutants in rice. Plant Physiol 134(4):1642–1653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schomburg FM, Bizzell CM, Lee DJ, Zeevaart JA, Amasino RM (2003) Overexpression of a novel class of gibberellin 2-oxidases decreases gibberellin levels and creates dwarf plants. Plant Cell 15(1):151–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shan X, Li Y, Jiang Y, Jiang Z, Hao W, Yuan Y (2013) Transcriptome profile analysis of maize seedlings in response to high-salinity, drought and cold stresses by deep sequencing. Plant Mol Biol Report 31(6):1485–1491

    Article  CAS  Google Scholar 

  • Shan C, Mei Z, Duan J, Chen H, Feng H, Cai W (2014) OsGA2ox5, a gibberellin metabolism enzyme, is involved in plant growth, the root gravity response and salt stress. PLoS ONE 9(1):e87110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot. https://doi.org/10.1155/2012/217037

    Article  Google Scholar 

  • Shim JS, Jung C, Lee S, Min K, Lee YW, Choi Y et al (2013) AtMYB 44 regulates WRKY70 expression and modulates antagonistic interaction between salicylic acid and jasmonic acid signaling. Plant J 73(3):483–495

    Article  CAS  PubMed  Google Scholar 

  • Somasundaram R, Jaleel CA, Abraham SS, Azooz MM, Panneerselvam R (2009) Role of paclobutrazol and ABA in drought stress amelioration in Sesamum indicum L. Glob J Mol Sci 4(2):56–62

    CAS  Google Scholar 

  • Song J, Guo B, Song F, Peng H, Yao Y, Zhang Y, Sun Q, Ni Z (2011) Genome-wide identification of gibberellins metabolic enzyme genes and expression profiling analysis during seed germination in maize. Gene 482(1–2):34–42

    Article  CAS  PubMed  Google Scholar 

  • Sperdouli I, Moustakas M (2012) Interaction of proline, sugars, and anthocyanins during photosynthetic acclimation of Arabidopsis thaliana to drought stress. Plant Physiol 169:577–585

    Article  CAS  Google Scholar 

  • Spitzer T, Míša P, Bílovský J, Kazda J (2015) Management of maize stand height using growth regulators. Plant Prot Sci 51(4):223–230

    Article  CAS  Google Scholar 

  • Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies. Proc Natl Acad Sci USA 100(16):9440–9445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thirumalaikumar VP, Devkar V, Mehterov N, Ali S, Ozgur R, Turkan I et al (2018) NAC transcription factor JUNGBRUNNEN 1 enhances drought tolerance in tomato. Plant Biotechnol J 16(2):354–366

    Article  CAS  PubMed  Google Scholar 

  • Thomas SG, Phillips AL, Hedden P (1999) Molecular cloning and functional expression of gibberellin 2-oxidases, multifunctional enzymes involved in gibberellin deactivation. Proc Natl Acad Sci USA 96(8):4698–4703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Upadhyaya A, Sankhla D, Davis TD, Sankhla N, Smith BN (1985) Effect of paclobutrazol on the activities of some enzymes of activated oxygen metabolism and lipid peroxidation in senescing soybean leaves. J Plant Physiol 121(5):453–461

    Article  CAS  Google Scholar 

  • Urbanová T, Tarkowská D, Novák O, Hedden P, Strnad M (2013) Analysis of gibberellins as free acids by ultra performance liquid chromatography–tandem mass spectrometry. Talanta 112:85–94

    Article  PubMed  CAS  Google Scholar 

  • Vettakkorumakankav NN, Falk D, Saxena P, Fletcher RA (1999) A crucial role for gibberellins in stress protection of plants. Plant Cell Physiol 40(5):542–548

    Article  CAS  Google Scholar 

  • Wang C, Yang A, Yin H, Zhang J (2008) Influence of water stress on endogenous hormone contents and cell damage of maize seedlings. J Integr Plant Biol 50(4):427–434

    Article  CAS  PubMed  Google Scholar 

  • Wu A, Allu AD, Garapati P, Siddiqui H, Dortay H, Zanor MI et al (2012) JUNGBRUNNEN1, a reactive oxygen species-responsive NAC transcription factor, regulates longevity in Arabidopsis. Plant Cell 24(2):482–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi S (2008) Gibberellin metabolism and its regulation. Annu Rev Plant Biol 59:225–251

    Article  CAS  PubMed  Google Scholar 

  • Yang D, Wang N, Yan X, Shi J, Zhang M, Wang Z, Yuan H (2014) Microencapsulation of seed-coating tebuconazole and its effects on physiology and biochemistry of maize seedlings. Colloids Surf B 114:241–246

    Article  CAS  Google Scholar 

  • Yemm EW, Willis AJ (1954) The estimation of carbohydrates in plant extracts by anthrone. Biochem J 57(3):508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yokotani N, Ichikawa T, Kondou Y, Matsui M, Hirochika H, Iwabuchi M, Oda K (2008) Expression of rice heat stress transcription factor OsHsfA2e enhances tolerance to environmental stresses in transgenic Arabidopsis. Planta 227(5):957–967

    Article  CAS  PubMed  Google Scholar 

  • Zhong T, Zhang L, Sun S, Zeng H, Han L (2014) Effect of localized reduction of gibberellins in different tobacco organs on drought stress tolerance and recovery. Plant Biotechnol Rep 8(5):399–408

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Agricultural Science and Technology Innovation Program of Jilin Province (CXGC2017ZY026) and the National Natural Science Foundation of China (No. 31771879).

Author information

Authors and Affiliations

Authors

Contributions

ZC and YL contributed equally to the study. CG and XL designed the experiments. ZC, YY, YL, QL, NL, WH and DH performed the experiments. ZC and XL analyzed the data. ZC and XL wrote the manuscript.

Corresponding authors

Correspondence to Xiangguo Liu or Changhong Guo.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest in this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Liu, Y., Yin, Y. et al. Expression of AtGA2ox1 enhances drought tolerance in maize. Plant Growth Regul 89, 203–215 (2019). https://doi.org/10.1007/s10725-019-00526-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-019-00526-x

Keywords

Navigation