Skip to main content
Log in

Comparative physiology during ripening in tomato rich-anthocyanins fruits

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Solanum lycopersicum L. (tomato) is a very important fruit vegetable with high economic importance and nutritional impact on the consumers worldwide. Moreover, tomato fruits are an important source of nutraceutical compounds. This work describes the physiological diversity affecting the ripening process that yields variation in fruit pigmentation with regard to anthocyanins compounds for one non-anthocyanin-accumulating (Ailsa Craig) and two anthocyanin-accumulating tomato genotypes (anthocyanin fruit type, low pigment accumulation, and Sun Black, high pigment accumulation). Using tomato fruits obtained by traditional breeding the present study reported modified hormone equilibrium at different ripening stages. This phenomenon can be considered as a consequence of the different pattern in the anthocyanins accumulation in fruits. Moreover, the fruit genotype showing the highest pigment accumulation appear more firm at the commercial stage. Overall, these results showed the considerable potential of exploiting natural genetic diversity to obtain tomatoes with higher levels of anthocyanins, and different quality traits such as colour and firmness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alexander L, Grierson D (2002) Ethylene biosynthesis and action in tomato: a model for climacteric fruit ripening. J Exp Bot 53(377):2039–2055

    Article  CAS  PubMed  Google Scholar 

  • Baldassarre V, Cabassi G, Spadafora N, Aprile A, Müller C, Rogers H, Ferrante A (2015) Wounding tomato fruit elicits ripening stage-specific changes in gene expression and production of volatile compounds. J Exp Bot 66:1511–1526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bleecker AB, Kende H (2000) Ethylene: a gaseous signal molecule in plants. Annu Rev Cell Dev Biol 16:1–18

    Article  CAS  PubMed  Google Scholar 

  • Borghesi E, Gonzalez-Miret ML, Escudero-Gilete ML, Malorgio F, Heredia FJ, Meléndez-Martínez AJ (2011) Effects of salinity stress on carotenoids, anthocyanins, and colour of diverse tomato genotypes. J Agric Food Chem 59:11676–11682

    Article  CAS  PubMed  Google Scholar 

  • Butelli E, Titta L, Giorgio M, Mock HP, Matros A, Peterek S, Schijlen EG, Hall RD, Bovy AG, Luo J, Martin C (2008) Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nat Biotechnol 26:1301–1308

    Article  CAS  PubMed  Google Scholar 

  • Cantín CM, Fidelibus MW, Crisosto CH (2007) Application of abscisic acid (ABA) at veraison advanced red color development and maintained postharvest quality of ‘Crimson Seedless’ grapes. Postharvest Biol Technol 46(3):237–241

    Article  Google Scholar 

  • Cao S, Hu Z, Zheng Y, Yang Z, Lu B (2011) Effect of BTH on antioxidant enzymes, radical-scavenging activity and decay in strawberry fruit. Food Chem 125(1):145–149

    Article  CAS  Google Scholar 

  • Cocetta G, Rossoni M, Gardana C, Mignani I, Ferrante A, Spinardi A (2015) Methyl jasmonate affects phenolic metabolism and gene expression in blueberry (Vaccinium corymbosum). Physiol Plant 153(2):269–283

    Article  CAS  PubMed  Google Scholar 

  • De Pascual-Teresa S, Sanchez-Ballesta MT (2008) Anthocyanins: from plant to health. Phytochem Rev 7(2):281–299

    Article  Google Scholar 

  • Ferrante A, Vernieri P, Tognoni F, Serra G (2006) Changes in abscisic acid and flower pigments during floral senescence of petunia. Biol Plant 50(4):581–585

    Article  CAS  Google Scholar 

  • Giovannoni J (2001) Molecular biology of fruit maturation and ripening. Annu Rev Plant Physiol Plant Mol Biol 52:725–749

    Article  CAS  PubMed  Google Scholar 

  • Giovannoni JJ (2004) Genetic regulation of fruit development and ripening. Plant Cell 16:S170–S180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzali S, Mazzucato A, Perata P (2009) Purple as a tomato: towards high anthocyanin tomatoes. Trends Plant Sci 14:237–241

    Article  CAS  PubMed  Google Scholar 

  • He J, Giusti MM (2010) Anthocyanins: natural colourants with health-promoting properties. Annu Rev Food Sci Technol 1:163–187

    Article  CAS  PubMed  Google Scholar 

  • Hoeberichts FA, Van Der Plas LH, Woltering EJ (2002) Ethylene perception is required for the expression of tomato ripening-related genes and associated physiological changes even at advanced stages of ripening. Postharvest Biol Technol 26(2):125–133

    Article  CAS  Google Scholar 

  • Ji K, Kai W, Zhao B, Sun Y, Yuan B, Dai S, Li Q, Chen P, Wang Y, Pei Guo Y, Leng P (2014) SlNCED1 and SlCYP707A2: key genes involved in ABA metabolism during tomato fruit ripening. J Exp Bot 65:5243–5255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia HF, Chai YM, Li CL, Lu D, Luo JJ, Qin L, Shen YY (2011) Abscisic acid plays an important role in the regulation of strawberry fruit ripening. Plant Physiol 157:188–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang Y, Joyce DC (2003) ABA effects on ethylene production, PAL activity, anthocyanin and phenolic contents of strawberry fruit. Plant Growth Regul 39(2):171–174

    Article  Google Scholar 

  • Kong JM, Chia LS, Goh NÇK, Chia TF, Brouillard R (2003) Analysis and biological activities of anthocyanins. Phytochemistry 64:923–933

    Article  CAS  PubMed  Google Scholar 

  • Kosar M, Kafkas E, Paydas S, Baser KHC (2004) Phenolic composition of strawberry genotypes at different maturation stages. J Agric Food Chem 52(6):1586–1589

    Article  CAS  PubMed  Google Scholar 

  • Kumar R, Khurana A, Sharma AK (2014) Role of plant hormones and their interplay in development and ripening of fleshy fruits. J Exp Bot 65:4561–4575

    Article  CAS  PubMed  Google Scholar 

  • Lee DW (2002) Anthocyanins in autumn leaf senescence. Adv Bot Res 37:147–165

    Article  CAS  Google Scholar 

  • Leng P, Yuan B, Guo Y, Chen P (2014) The role of abscisic acid in fruit ripening and responses to abiotic stress. J Exp Bot 65(16):4577–4588

    Article  CAS  PubMed  Google Scholar 

  • Li D, Li L, Luo Z, Mou W, Mao L, Ying T (2015) Comparative transcriptome analysis reveals the influence of abscisic acid on the metabolism of pigments, ascorbic acid and folic acid during strawberry fruit ripening. PLoS ONE 10(6):e0130037

    Article  PubMed  PubMed Central  Google Scholar 

  • McAtee P, Karim S, Schaffer R, David K (2013) A dynamic interplay between phytohormones is required for fruit development, maturation, and ripening. Front Plant Sci 4:79

    Article  PubMed  PubMed Central  Google Scholar 

  • Mes PJ, Boches P, Myers JR (2008) Characterization of tomatoes expressing anthocyanin in the fruit. J Am Soc Hortic Sci 133:262–269

    Google Scholar 

  • Razzaq K, Singh Z, Khan AS, Khan SA, Ullah S (2016) Role of 1-MCP in regulating ‘Kensington Pride’ mango fruit softening and ripening. Plant Growth Regul. doi:10.1007/s10725-015-0101-7

    Google Scholar 

  • Ren J, Sun L, Wang C, Zhao S, Leng P (2011) Expression analysis of the cDNA for magnesium chelatase H subunit (CHLH) during sweet cherry fruit ripening and under stress conditions. Plant Growth Regul 63:301–307

    Article  CAS  Google Scholar 

  • Su L, Diretto G, Purgatto E, Danoun S, Zouine M, Li Z, Roustan JP, Bouzayen M, Giuliano G, Chervin C (2015) Carotenoid accumulation during tomato fruit ripening is modulated by the auxin-ethylene balance. BMC Plant Biol 8(15):114

    Article  Google Scholar 

  • Sun L, Zhang M, Ren J, Qi J, Zhang G, Leng P (2010) Reciprocity between abscisic acid and ethylene at the onset of berry ripening and after harvest. BMC Plant Biol 10(1):257

    Article  PubMed  PubMed Central  Google Scholar 

  • Trivellini A, Ferrante A, Vernieri P, Serra G (2011) Effects of abscisic acid on ethylene biosynthesis and perception in Hibiscus rosa-sinensis L. flower development. J Exp Bot 15:5437–5452

    Article  Google Scholar 

  • Verheul M, Slimestad R, Tjøstheim IH (2015) From producer to consumer-greenhouse tomato quality as affected by variety, maturity stage at harvest, transport conditions and supermarket storage. J Agric Food Chem 63(20):5026–5034

    Article  CAS  PubMed  Google Scholar 

  • Vernieri P, Perata P, Bugnoli M, Presentini R, Lorenzi R, Ceccarelli N, Alpi A, Tognoni F (1989) Solid phase radioimmunoassay for the quantitation of abscisic acid in plant crude extracts using a new monoclonal antibody. J Plant Physiol 134:441–446

    Article  CAS  Google Scholar 

  • Wang YP, Chen P, Sun L et al (2015) Transcriptional regulation of PaPYLs, PaPP2Cs and PaSnRK2 s during sweet cherry fruit development and in response to abscisic acid and auxin at onset of fruit ripening. Plant Growth Regul 75:455–464

    Article  CAS  Google Scholar 

  • Wei YZ, Hu FC, Hu GB, Li XJ, Huang XM, Wang HC (2011) Differential expression of anthocyanin biosynthetic genes in relation to anthocyanin accumulation in the pericarp of Litchi chinensis Sonn. PLoS ONE 6(4):e19455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wen CH, Lin SS, Chu FH (2015) Transcriptome analysis of a subtropical deciduous tree: autumn leaf senescence gene expression profile of formosan gum. Plant Cell Physiol 56(1):163–174

    Article  PubMed  Google Scholar 

  • Zafra-Stone S, Yasmin T, Bagchi M, Chatterjee A, Vinson JA, Bagchi D (2007) Research Article Berry anthocyanins as novel antioxidants in human health and disease prevention. Mol Nutr Food Res 51:675–683

    Article  CAS  PubMed  Google Scholar 

  • Zhang M, Yuan B, Leng P (2009) The role of ABA in triggering ethylene biosynthesis and ripening of tomato fruit. J Exp Bot 60(6):1579–1588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alice Trivellini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borghesi, E., Ferrante, A., Gordillo, B. et al. Comparative physiology during ripening in tomato rich-anthocyanins fruits. Plant Growth Regul 80, 207–214 (2016). https://doi.org/10.1007/s10725-016-0158-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-016-0158-y

Keywords

Navigation