Skip to main content
Log in

Altered tetrapyrrole metabolism and transcriptome during growth-promoting actions in rice plants treated with 5-aminolevulinic acid

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

As a precursor of chlorophyll, 5-aminolevulinic acid (ALA) acts as a growth-promoting factor in plants, but little is known of molecular basis of plant growth action. The exogenous supply of an optimal concentration of 75 µM ALA without photooxidative risks, as indicated by a negligible change in conductivity, increased dry shoot biomass of rice up to 16 % after 10 days of ALA treatment, compared to the untreated control. Although rice plants treated with ALA gradually increased levels of ALA-synthesizing capacity during 30 h of the treatment, a noticeable increase in chlorophyll content was not observed. Levels of protoporphyrin IX and Mg–porphyrins were not significantly changed 6 h after ALA treatment and then decreased 30 h after the treatment, while transcript levels of most biosynthetic genes in tetrapyrrole pathway almost kept constant or slightly decreased. In microarray analysis of ALA-treated rice plants, categories of significantly up-regulated transcripts highlight particular biological processes involved in cell cycle, transcription factors, posttranscriptional regulation, and metabolisms of macromolecules. Our results demonstrate that the regulation of tetrapyrrole biosynthesis did not contribute significantly to growth enhancement in ALA-treated rice. We propose that the elevated status of ALA in plant cells alters the transcriptional control of genes involved in physiological processes vital for plant growth, thereby contributing to enhancement of plant biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ALA:

5-Aminolevulinic acid

Mg–Proto IX:

Mg–protoporphyrin IX

Mg–Proto IX ME:

Mg–protoporphyrin IX methyl ester

Pchlide:

Protochlorophyllide

Proto IX:

Protoporphyrin IX

References

  • Ambawat S, Sharma P, Yadav NR, Yadav RC (2013) MYB transcription factor genes as regulators for plant responses: an overview. Physiol Mol Biol Plants 19:307–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ankele E, Kindgren P, Pesquet E, Strand A (2007) In vivo visualization of Mg–protoporphyrin IX, a coordinator of photosynthetic gene expression in the nucleus and the chloroplast. Plant Cell 19:1964–1979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beale SI (1999) Enzymes of chlorophyll biosynthesis. Photosynth Res 60:43–73

    Article  CAS  Google Scholar 

  • Beale SI, Weinstein JD (1990) Tetrapyrrole metabolism in photosynthetic organisms. In: Daily HA (ed) Biosynthesis of heme and chlorophyll. McGraw-Hill, New York, pp 287–391

    Google Scholar 

  • Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Methods Enzymol 52:302–310

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A, Lin J, Minguez P, Bork P, von Mering C, Jensen LJ (2013) STRING v9.1: protein–protein interaction networks, with increased coverage and integration. Nucleic Acids Res 41:D808–D815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hara M, Takahashi I, Yamori M, Tanaka T, Funada S, Watanabe K (2011) Effects of 5-aminolevulinic acid on growth and amylase activity in the radish taproot. Plant Growth Regul 64:287–291

    Article  CAS  Google Scholar 

  • Hotta Y, Tanaka T, Takaoka H, Takeuchi Y, Konnai M (1997a) New physiological effects of 5-aminolevulinic acid in plants: the increase of photosynthesis, chlorophyll content, and plant growth. Biosci Biotechnol Biochem 61:2025–2028

    Article  CAS  Google Scholar 

  • Hotta Y, Tanaka T, Takaoka H, Takeuchi Y, Konnai M (1997b) Promotive effects of 5-aminolevulinic acid on the yield of several crops. Plant Growth Regul 22:109–114

    Article  CAS  Google Scholar 

  • Jung S, Yang K, Lee D-E, Back K (2004) Expression of Bradyrhizobium japonicum 5-aminolevulinic acid synthase induces severe photodynamic damage in transgenic rice. Plant Sci 167:789–795

    Article  CAS  Google Scholar 

  • Kim JG, Back K, Lee HY, Lee HJ, Phung TH, Grimm B, Jung S (2014) Increased expression of Fe-chelatase leads to increased metabolic flux into heme and confers protection against photodynamically induced oxidative stress. Plant Mol Biol 86:271–287

    Article  CAS  PubMed  Google Scholar 

  • Kleine T, Voigt C, Leister D (2009) Plastid signalling to the nucleus: messengers still lost in the mists? Trends Genet 25:185–192

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi Y, Kanesaki Y, Tanaka A, Kuroiwa H, Kuroiwa T, Tanaka K (2009) Tetrapyrrole signal as a cell-cycle coordinator from organelle to nuclear DNA replication in plant cells. Proc Natl Acad Sci USA 106:803–807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kotera E, Tasaka M, Shikanai T (2005) A pentatricopeptide repeat protein is essential for RNA editing in chloroplasts. Nature 433:326–330

    Article  CAS  PubMed  Google Scholar 

  • Koussevitzky S, Nott A, Mockler TC, Hong F, Sachetto-Martins G, Surpin M, Lim J, Mittler R, Chory J (2007) Signals from chloroplasts converge to regulate nuclear gene expression. Science 316:715–719

    Article  CAS  PubMed  Google Scholar 

  • Lermontova I, Grimm B (2000) Overexpression of plastidic protoporphyrinogen IX oxidase leads to resistance to the diphenyl-ether herbicide acifluorfen. Plant Physiol 122:75–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382

    Article  CAS  Google Scholar 

  • Liu L, Nguyen NT, Ueda A, Saneoka H (2014) Effects of 5-aminolevulinic acid on Swiss chard (Beta vulgaris L. subsp. cicla) seedling growth under saline conditions. Plant Growth Regul 74:219–228

    Article  CAS  Google Scholar 

  • Memon SA, Hou X, Wang L, Li Y (2009) Promotive effect of 5-aminolevulinic acid on chlorophyll, antioxidative enzymes and photosynthesis of Pakchoi (Brassica campestris ssp. chinensis var. communis Tsen et Lee). Acta Physiol Plant 31:51–57

    Article  CAS  Google Scholar 

  • Naeem MS, Jin ZL, Wan GL, Liu D, Liu HB, Yoneyama K, Zhou WJ (2010) 5-Aminolevulinic acid improves photosynthetic gas exchange capacity and ion uptake under salinity stress in oilseed rape (Brassica napus L.). Plant Soil 332:405–415

    Article  CAS  Google Scholar 

  • Papenbrock J, Grimm B (2001) Regulatory network of tetrapyrrole biosynthesis—studies of intracellular signaling involved in metabolic and developmental control of plastids. Planta 213:667–681

    Article  CAS  PubMed  Google Scholar 

  • Papenbrock J, Mock HP, Kruse E, Grimm B (1999) Expression studies in tetrapyrrole biosynthesis: inverse maxima of magnesium chelatase and ferrochelatase activity during cyclic photoperiods. Planta 208:264–273

    Article  CAS  Google Scholar 

  • Pfannschmidt T (2010) Plastidial retrograde signalling—a true “plastid factor” or just metabolite signatures? Trends Plant Sci 15:427–435

    Article  CAS  PubMed  Google Scholar 

  • Phung TH, Jung S (2014) Perturbed porphyrin biosynthesis contributes to differential herbicidal symptoms in photodynamically stressed rice (Oryza sativa) treated with 5-aminolevulinic acid and oxyfluorfen. Pestic Biochem Physiol 116:103–110

    Article  CAS  PubMed  Google Scholar 

  • Phung TH, Jung HI, Park JH, Kim JG, Back K, Jung S (2011) Porphyrin biosynthesis control under water stress: sustained porphyrin status correlates with drought tolerance in transgenic rice. Plant Physiol 157:1746–1764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramel F, Birtic S, Ginies C, Soubigou-Taconnat L, Triantaphylidés C, Havaux M (2012) Carotenoid oxidation products are stress signals that mediate gene responses to singlet oxygen in plants. Proc Natl Acad Sci USA 109:5535–5540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rebeiz CA, Montazer-Zouhool A, Hopen H, Wu SM (1984) Photodynamic herbicides: 1. Concepts and phenomenology. Enzyme Microb Technol 6:390–401

    Article  CAS  Google Scholar 

  • Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M, Currier T, Thiagarajan M, Sturn A, Snuffin M, Rezantsev A, Popov D, Ryltsov A, Kostukovich E, Borisovsky I, Liu Z, Vinsavich A, Trush V, Quackenbush J (2003) TM4: a free, open-source system for microarray data management and analysis. Biotechniques 34:374–378

    CAS  PubMed  Google Scholar 

  • Sasaki K, Marquez F, Nishio N, Nagai S (1995) Promotive effects of 5-aminolevulinic acid on the growth and photosynthesis of Spirulina platensis. J Ferment Bioeng 79:453–457

    Article  Google Scholar 

  • Schmitz-Linneweber C, Small I (2008) Pentatricopeptide repeat proteins: a socket set for organelle gene expression. Trends Plant Sci 13:663–670

    Article  CAS  PubMed  Google Scholar 

  • Stirnimann CU, Petsalaki E, Russell RB, Müller CW (2010) WD40 proteins propel cellular networks. Trends Biochem Sci 35:565–574

    Article  CAS  PubMed  Google Scholar 

  • Strand A, Asami T, Alonso J, Ecker JR, Chory J (2003) Chloroplast to nucleus communication triggered by accumulation of Mg–protoporphyrin IX. Nature 421:79–83

    Article  CAS  PubMed  Google Scholar 

  • Tanaka R, Tanaka A (2007) Tetrapyrrole biosynthesis in higher plants. Annu Rev Plant Biol 58:321–346

    Article  CAS  PubMed  Google Scholar 

  • Tanaka Y, Tanaka A, Tsuji H (1993) Effects of 5-aminolevulinic acid on the accumulation of chlorophyll b and apoproteins of the light-harvesting chlorophyll a/b-protein complex of photosystem II. Plant Cell Physiol 34:465–472

    CAS  Google Scholar 

  • Tatusov RL, Galperin MY, Natale DA, Koonin EV (2000) The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res 28:33–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tripathy BC, Chakraborty N (1991) 5-aminolevulinic acid induced photodynamic damage of the photosynthetic electron transport chain of cucumber (Cucumis sativus L.) cotyledons. Plant Physiol 96:761–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe K, Tanaka T, Kuramochi H, Takeuchi Y (2000) Improving salt tolerance of cotton seedling with 5-aminolevulinic acid. Plant Growth Regul 32:97–101

    Article  Google Scholar 

  • Wolf S, Höfte H (2014) Growth control: a saga of cell walls, ROS, and peptide receptors. Plant Cell 26:1848–1856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Workman C, Jensen LJ, Jarmer H, Berka R, Gautier L, Nielser HB, Saxild HH, Nielsen C, Brunak S, Knudsen S (2002) A new non-linear normalization method for reducing variability in DNA microarray experiments. Genome Biol 3:1–16

    Article  Google Scholar 

  • Xie SS, Wu HJ, Zang HY, Wu LM, Zhu QQ, Gao XW (2014) Plant growth promotion by spermidine-producing Bacillus subtilis OKB105. Mol Plant Microbe Interact 27:655–663

    Article  CAS  PubMed  Google Scholar 

  • Zhang ZJ, Li HZ, Zhou WJ, Takeuchi Y, Yoneyama K (2006) Effect of 5-aminolevulinic acid on development and salt tolerance of potato (Solanum tuberosum L.) microtubers in vitro. Plant Growth Regul 49:27–34

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Research Foundation of Korea Grant funded by the Korean Government (Ministry of Education, Science and Technology) (NRF-2009-0076123 and NRF-2010-0005635).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunyo Jung.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 402 kb)

Supplementary material 2 (PDF 33 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, H., Kim, HS. & Jung, S. Altered tetrapyrrole metabolism and transcriptome during growth-promoting actions in rice plants treated with 5-aminolevulinic acid. Plant Growth Regul 78, 133–144 (2016). https://doi.org/10.1007/s10725-015-0080-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-015-0080-8

Keywords

Navigation