Skip to main content
Log in

Potential allelochemicals in root zone soils of Stellera chamaejasme L. and variations at different geographical growing sites

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Populations of Stellera chamaejasme L. have been increasing constantly in recent years in some areas of the grassland in north China but why this toxic weed has become highly competitive is not clear. In order to determine if any potential allelochemicals are released into the soil environment by S. chamaejasme, we investigated the chemical composition of a water-washed solution of the living roots with rhizosphere soil. This led to the isolation and identification of seven compounds: umbelliferone (1), daphnoretin (2), chamaechromone (3), 7-methoxyneochamaejasmine A (4), mesoneochamaejasmin A (5), neochamaejasmin B (6), dihydrodaphnodorin B (7). All are secondary metabolites of S. chamaejasme. Bioassay showed that 1, 5 and 6 had a strong inhibitory effect on Festuca rubra L. and Medicago sativa seedlings. These compounds were quantified by high performance liquid chromatography in 25 root zone soil samples of S. chamaejasme collected at altitudes between 165 and 4741 m from the northeast to the Tibetan Plateau of China. All samples contained at least one of the phytotoxic compounds. Their content did not correlate with the altitude of the growing site. However, the level of chamaechromone negatively correlated with the soil pH. Principle components analysis indicated that the flavonoids might come from the same source. These potential allelochemicals from root release into the soil might play an important role in the highly competitive nature and broad ecological adaptability of S. chamaejasme in the wild.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anaya AL, Ortega RC, Rodriguez VN (1992) Impact of allelopathy in the traditional management of agroecosystem in Mexico. In: Rizvi SJH, Rizvi V (eds) Allelopathy. Basic and applied aspects. Chapman & Hall, London, pp 272–301

    Google Scholar 

  • Blanco JA (2007) The representation of allelopathy in ecosystem-level forest models. Ecol Model 209:65–77

    Article  Google Scholar 

  • Cao CY, Fu Y, Wang WX, Gao FF (2007) Inhibition influence of extraction liquids from Stellera chamaejasme root on seed germination. J Northeast Univ 28:729–732

    CAS  Google Scholar 

  • Chou CH, Young CC (1974) Effects of osmotic concentration and pH on plant growth. Taiwania 19:157–165

    Google Scholar 

  • Djordjevic MA, Redmond JW, Batley M, Rolfe BG (1987) Clovers secrete specific phenolic compounds which either stimulate or repress nod gene expression in Rhizobium trifolii. EMBO J 6:1173–1179

    PubMed Central  CAS  PubMed  Google Scholar 

  • Feng BM (2002) Research on the anti-epilepsy constituents of Stellera chamaejasme L. and Citrus grandis Osbeek. Dissertation, Shenyang Pharmaeeutical University

  • Feng BM, Pei YH, Han B (2001) Flavonoids from root of Stellera chamaejasme. Chin Tradit Herb Drugs 32:14–15

    CAS  Google Scholar 

  • Fischer NH, Williamson GB, Weidenhamer D, Richardson DR (1994) In search of allelopathy in the Florida scrub: the role of terpenoids. J Chem Ecol 20:1355–1380

    Article  CAS  PubMed  Google Scholar 

  • Grey WC (1995) Stellera chamaejasme: an overview. New Plantsman 2:43–49

    Google Scholar 

  • Hao WY, Ren LX, Ran W, Shen QR (2010) Allelopathic effects of root exudates from watermelon and rice plants on Fusarium oxysporum f.sp. niveum. Plant Soil 336:485–497

    Article  CAS  Google Scholar 

  • Jiang ZH, Tanaka T, Sakamoto T, Kouno I, Duan JA, Zhou RH (2002) Biflavanones, diterpenes, and coumarins from the roots of Stellera chamaejasme L. Chem Pharm Bull 50:137–139

    Article  CAS  PubMed  Google Scholar 

  • Kato-Noguchi H, Fushimi Y, Kimura F, Morita M, Suenaga K (2012) Organ-specific-active allelopathic substance in red pine needles. Plant Growth Regul 68:171–175

    Article  CAS  Google Scholar 

  • Kobayashi K (2004) Factors affecting phytotoxic activity of allelochemicals in soil. Weed Biol Manag 4:1–7

    Article  CAS  Google Scholar 

  • Kong C, Xu T, Hu F, Huang S (1999) Allelopathy under environmental stress and its induced mechanism. Acta Ecologica Sinica 20:849–854

    Google Scholar 

  • Kong CH, Wang P, Gu Y, Xu XH, Wang ML (2008) Fate and impact on microorganisms of rice allelochemicals in paddy soil. J Agric Food Chem 56:5043–5049

    Article  CAS  PubMed  Google Scholar 

  • Liu GF, Zhao CL, Hou FF, Yang SS, Zhao TL, Liu QG (1996) Studies on the chemical constituents of chinese stellera(Stellera chamaejasme) (I). Chin Tradit Herb Drugs 27:67–79

    CAS  Google Scholar 

  • Liu Y, Long R, Yao T (2004) Research progress on Stellera chamajasme L. in grassland. Pratacult Sci 21:55–61

    CAS  Google Scholar 

  • Mahmood K, Khan MB, Ijaz M, Zeng RS, Luo SM (2014) Molecular, biochemical and bioassay based evidence of lower allelopathic potential in genetically modified rice. Plant Growth Regul 74:73–82

    Article  CAS  Google Scholar 

  • Mishra S, Nautiyal CS (2012) Reducing the allelopathic effect of Parthenium hysterophorus L. on wheat (Triticum aestivum L.) by Pseudomonas putida. Plant Growth Regul 66:155–165

    Article  CAS  Google Scholar 

  • Narantuya S, Batsurén D, Rashkes YV, Mil’grom EG (1994) Chemical study of plants of the Mongolian flora coumarins of Stellera chamaejasme: the structure of chamaejasmoside—a new bicoumarin glycoside. Chem Nat Compd 30:197–199

    Article  Google Scholar 

  • Niwa M, Tatematsu S, Liu GQ, Hirata Y (1984) Isolation and structures of two new C-3/C-3″-biflavanones, neochamaejasmin a and neochamaejasmin B. Chem Lett 13:539–542

    Article  Google Scholar 

  • Paul GD, Miller AJ, Hirsch PR (2010) Are root exudates more important than other sources of rhizodeposits in structuring rhizosphere bacterial communities? FEMS Microbiol Ecol 72:313–327

    Article  Google Scholar 

  • Queiroz SCN, Cantrell CL, Duke SO, Wedge DE, Nandula VK, Moraes RM, Cerdeira AL (2012) Bioassay-directed isolation and identification of phytotoxic and fungitoxic acetylenes from Conyza canadensis. J Agric Food Chem 60:5893–5898

    Article  CAS  PubMed  Google Scholar 

  • Quintana N, Weir TL, Du J, Broeckling CD, Rieder JP, Stermitz FR, Vivanco JM (2008) Phytotoxic polyacetylenes from roots of Russian knapweed (Acroptilon repens (L.) DC.). Phytochemistry 69:2572–2578

    Article  CAS  PubMed  Google Scholar 

  • Reigosa MJ, Sánchez-Moreiras A, González L (1999) Ecophysiological approach in allelopathy. Crit Rev Plant Sci 18:577–608

    Article  CAS  Google Scholar 

  • Seyed MR (2011) Plant coumarins as allelopathic agents. Int J Biol Chem 5:86–90

    Article  Google Scholar 

  • Sosa T, Valares C, Alías JC, Lobón NC (2010) Persistence of flavonoids in Cistus ladanifer soils. Plant Soil 337:51–63

    Article  CAS  Google Scholar 

  • Sun G, Luo P, Wu N, Qiu PF, Gao YH, Chen H, Shi FS (2009) Stellera chamaejasme L. increases soil N availability, turnover rates and microbial biomass in an alpine meadow ecosystem on the eastern Tibetan Plateau of China. Soil Biol Biochem 41:86–91

    Article  Google Scholar 

  • Taniguchi M, Fujiwara A, Baba K (1997) Three flavonoids from Daphneodora. Phytochemistry 45:183–188

    Article  CAS  Google Scholar 

  • Taylor LP, Grotewold E (2005) Flavonoids as developmental regulators. Curr Opin Plant Biol 8:317–323

    Article  CAS  PubMed  Google Scholar 

  • Tharayil N, Bhowmik PC, Xing B (2008) Bioavailability of allelochemicals as affected by companion compounds in soil matrices. J Agric Food Chem 56:3706–3713

    Article  CAS  PubMed  Google Scholar 

  • Treutter D (2006) Significance of flavonoids in plant resistance: a review. Environ Chem Lett 4:147–157

    Article  CAS  Google Scholar 

  • Wang Y, Gilbert MG (2007) Flora of China. Science Press, Beijing

    Google Scholar 

  • Yang GH (2005) Bioactive Constituents of Stellera chamaejasme, Zanthoxylum nitidum and Geranium strictipes. Dissertation, University of Fudan

  • Yaoya S, Kanho H, Mikami Y, Itani T, Umehara K, Kuroyanagi M (2004) Umbelliferone released from hairy root cultures of Pharbitis nil treated with copper sulfate and its subsequent glucosylation. Biosci Biotech Biochem 68:1837–1841

    Article  CAS  Google Scholar 

  • Zhang YH, Volis S, Sun H (2010) Chloroplast phylogeny and phylogeography of Stellera chamaejasme. Mol Phylogenet Evol 57:1162–1172

    Article  CAS  PubMed  Google Scholar 

  • Zhang ZQ, Zhang YH, Sun H (2011) The reproductive biology of Stellera chamaejasme (Thymelaeaceae): a self-incompatible weed with specialized flowers. Flora 206:567–574

    Article  Google Scholar 

  • Zhao L, Lou ZY, Zhu ZY, Zhang GQ, Chai YF (2008) Characterization of constituents in Stellera chamaejasme L. by rapid-resolution liquid chromatography–diode array detection and electrospray ionization time-of-flight mass spectrometry. Biomed Chromatogr 22:64–72

    Article  CAS  PubMed  Google Scholar 

  • Zhao BY, Liu ZY, Lu H (2010) Damage and control of poisonous weeds in Western Grassland of China. Agric Sci China 9:1512–1521

    Article  Google Scholar 

  • Zhou SQ, Wang H, Huang ZJ, Liu YL, Hu HF (2008) Research on allelopathy of Steura chamaejasme in decompose process in the soil on Alfalfa. Chin J Grassland 30:78–92

    Google Scholar 

Download references

Acknowledgments

We thank Professor Frank Stermitz for editorial assistance. This work was financially supported by the National Natural Science Foundation of China (31070386), Basic Research Program of Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (080423SYR1), the ‘Western Light’ associate scholar talent cultivation program of the Chinese Academy of Sciences, the Province-academy Cooperation Program of Henan Province of China (NO. 102106000021) and the ‘One-Three-Five’ Strategic Planning of Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Qin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 70 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, H., Cui, H., Jin, H. et al. Potential allelochemicals in root zone soils of Stellera chamaejasme L. and variations at different geographical growing sites. Plant Growth Regul 77, 335–342 (2015). https://doi.org/10.1007/s10725-015-0068-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-015-0068-4

Keywords

Navigation