Skip to main content
Log in

Influence of 24-epibrassinolide on lipid signalling and metabolism in Brassica napus

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Due to the increasing demand for biofuel production, it is an important goal to optimize the seed productivity and quality of oilseed plants even in adverse conditions. Acting on signalling mechanisms might provide means to attain such goals. In this study, we were interested in the effect of a brassinosteroid hormone 24-epibrassinolide (24-EBR) on Brassica napus cultivated in salt stress condition. We show that salt stress leads to a 60 % decrease in seed production in B. napus. This is accompanied by a 50 % decrease in seed oil content. Treatment with 24-EBR had no effect on seed and oil productivity in control plants. However, it could rescue half of the seed production and all the oil production in salt-treated plants. The fatty acid composition of seed oil in B. napus was selectively affected by salt stress, 24-EBR or combined treatment. Besides these long-term actions of 24-EBR, we have also investigated its short-term actions in cell signalling. We did so by in vivo labelling of plantlets with fluorescently labelled phosphatidylcholine. A treatment of 2 h with 24-EBR was sufficient to induce a substantial increase in the content of diacylglycerol and phosphatidic acid, two lipid mediators. Non-specific phospholipases C and phospholipases D are involved in these increases. Therefore, brassinosteroid treatments appear as promising way to gain oil productivity when plants have to grow in unfavourable conditions such as salt stress. The link between long-term actions and short-term signalling of 24-EBR is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Albrecht C, Boutrot F, Segonzac C, Schwessinger B, Gimenez-Ibanez S, Chinchilla D, Rathjen JP, de Vries SC, Zipfel C (2011) Brassinosteroids inhibit pathogen-associated molecular pattern–triggered immune signaling independent of the receptor kinase BAK1. PNAS 109:303–308

    Article  PubMed  PubMed Central  Google Scholar 

  • Arisz SA, van Wijk Rv, Roels W, Zhu J-K, Haring MA, Munnik T (2013) Rapid phosphatidic acid accumulation in response to low temperature stress in Arabidopsis is generated through diacylglycerol kinase. Front Plant Sci 4(1). doi:10.3389/fpls.2013.00001

  • Asghar HA, Zahir ZZ, Arshad MA, Khaliq AK (2002) Relationship between in vitro production of auxins by rhizobacteria and their growth-promoting activities in Brassica juncea L. Biol Fertil Soils 35(4):231–237

    Article  CAS  Google Scholar 

  • Atkinson NJ, Urwin PE (2012) The interaction of plant biotic and abiotic stresses: from genes to the field. J Exp Bot 63:3523–3543

    Article  PubMed  CAS  Google Scholar 

  • Bates PD, Browse J (2012) The significance of different diacylglycerol synthesis pathways on plant oil composition and bioengineering. Front Plant Sci 3 (147). doi:10.3389/fpls.2012.00147

  • Beisson F, Koo AJK, Ruuska S, Schwender J, Pollard M, Thelen JJ, Paddock T, Salas JJ, Savage L, Milcamps A, Mhaske VB, Cho Y, Ohlrogge JB (2003) Arabidopsis genes involved in acyl lipid metabolism. A 2003 census of the candidates, a study of the distribution of expressed sequence tags in organs, and a web-based database. Plant Physiol 132(2):681–697

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chapman KD, Ohlrogge JB (2012) Compartmentation of triacylglycerol accumulation in plants. J Biol Chem 287(4):2288–2294

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chaytor JP (1987) Analysis of fatty acids in lipids by high performance liquid chromatography (HPLC). Food Chem 23(1):19–27

    Article  CAS  Google Scholar 

  • Clouse SD (2011) Brassinosteroid signal transduction: from receptor kinase activation to transcriptional networks regulating plant development. Plant Cell Online 23(4):1219–1230

    Article  CAS  Google Scholar 

  • Divi U, Rahman T, Krishna P (2010) Brassinosteroid-mediated stress tolerance in arabidopsis shows interactions with abscisic acid, ethylene and salicylic acid pathways. BMC Plant Biol 10(1):1–14

    Article  Google Scholar 

  • Djafi N, Vergnolle C, Cantrel C, Wietrzynski W, Delage E, Cochet F, Puyaubert J, Soubigou-Taconnat L, Gey D, Collin S, Balzergue S, Zachowski A, Ruelland E (2013) The Arabidopsis DREB2 genetic pathway is constitutively repressed by basal phosphoinositide-dependent phospholipase C coupled to diacylglycerol kinase in Arabidopsis thaliana. Front Plant Sci 4. doi:10.3389/fpls.2013.00307

  • Evers D, Legay S, Lamoureux D, Hausman J, Hoffmann L, Renaut J (2012) Towards a synthetic view of potato cold and salt stress response by transcriptomic and proteomic analyses. Plant Mol Biol 78(4):503–514

    Article  PubMed  CAS  Google Scholar 

  • Francois LE (1994) Growth, seed yield, and oil content of canola grown under saline conditions. Agron J 86(2):233–237

    Article  Google Scholar 

  • Furukawa-Stoffer TL, Byers SD, Hodges DM, Laroche A, Weselake RJ (1998) Identification of N-ethylmaleimide-sensitive and -insensitive phosphatidate phosphatase activity in microspore-derived cultures of oilseed rape. Plant Sci 131(2):139–147

    Article  CAS  Google Scholar 

  • Goda H, Shimada Y, Asami T, Fujioka S, Yoshida S (2002) Microarray analysis of brassinosteroid-regulated genes in Arabidopsis. Plant Physiol 130(3):1319–1334

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Grindstaff KK, Fielding LA, Brodl MR (1996) Effect of gibberellin and heat shock on the lipid composition of endoplasmic reticulum in barley aleurone layers. Plant Physiol 110(2):571–581

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hong Y, Pan X, Welti R, Wang X (2008) Phospholipase Dα3 is involved in the hyperosmotic response in Arabidopsis. The Plant Cell Online 20(3):803–816

    Article  CAS  Google Scholar 

  • Hruz T, Laule O, Szabo G, Wessendorp F, Bleuler S, Oertle L, Widmayer P, Gruissem W, Zimmermann P (2008) Genevestigator V3: a reference expression database for the meta-analysis of transcriptomes. Adv Bioinform 2008:420747

    Google Scholar 

  • Hua W, Li R-J, Zhan G-M, Liu J, Li J, Wang X-F, Liu G-H, Wang H-Z (2012) Maternal control of seed oil content in Brassica napus: the role of silique wall photosynthesis. Plant J 69(3):432–444

    Article  PubMed  CAS  Google Scholar 

  • Janda M, Planchais S, Djafi N, Martinec J, Burketova L, Valentova O, Zachowski A, Ruelland E (2013) Phosphoglycerolipids are master players in plant hormone signal transduction. Plant Cell Rep. doi:10.1007/s00299-013-1399-0

  • Janeczko A, Biesaga K, Cielniak J, Dziurka M (2009) 24-Epibrassinolide modifies seed composition in soybean, oilseed rape and wheat. Seed Sci Technol 37(3):625–639

    Google Scholar 

  • Kagale S, Divi U, Krochko J, Keller W, Krishna P (2007) Brassinosteroid confers tolerance in Arabidopsis thaliana and Brassica napus to a range of abiotic stresses. Planta 225(2):353–364

    Article  PubMed  CAS  Google Scholar 

  • Khripach V (1990) Synthesis of brassinosteroids. Pure Appl Chem 62(7):1319–1324

    Article  CAS  Google Scholar 

  • Kim T-W, Wang Z-Y (2010) Brassinosteroid signal transduction from receptor kinases to transcription factors. Annu Rev Plant Biol 61(1):681–704

    Article  PubMed  CAS  Google Scholar 

  • Kim T-W, Michniewicz M, Bergmann DC, Wang Z-Y (2012) Brassinosteroid regulates stomatal development by GSK3-mediated inhibition of a MAPK pathway. Nature 482(7385):419–422

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kocourková D, Krčková Z, Pejchar P, Veselková Š, Valentová O, Wimalasekera R, Scherer GFE, Martinec J (2011) The phosphatidylcholine-hydrolysing phospholipase C NPC4 plays a role in response of Arabidopsis roots to salt stress. J Exp Bot 62(11):3753–3763

    Article  PubMed  PubMed Central  Google Scholar 

  • Kravets VS, Kolesnikov YS, Kretynin SV, Getman IA, Romanov GA (2010) Rapid activation of specific phospholipase(s) D by cytokinin in Amaranthus assay system. Physiol Plant 138(3):249–255

    Article  PubMed  CAS  Google Scholar 

  • Krinke O, Flemr M, Vergnolle C, Collin S, Renou J-P, Taconnat L, Yu A, Burketová L, Valentová O, Zachowski A, Ruelland E (2009) Phospholipase D activation is an early component of the salicylic acid signalling pathway in Arabidopsis cell suspensions. Plant Physiol 150(1):424–436

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lee J, Welti R, Schapaugh WT, Trick HN (2011) Phospholipid and triacylglycerol profiles modified by PLD suppression in soybean seed. Plant Biotechnol J 9(3):359–372

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Welti R, Roth M, Schapaugh WT, Li J, Trick HN (2012) Enhanced seed viability and lipid compositional changes during natural ageing by suppressing phospholipase Dα in soybean seed. Plant Biotechnol J 10(2):164–173

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Li M, Welti R, Wang X (2006) Quantitative profiling of Arabidopsis polar glycerolipids in response to phosphorus starvation. Roles of phospholipases Dζ1 and Dζ2 in phosphatidylcholine hydrolysis and digalactosyldiacylglycerol accumulation in phosphorus-starved plants. Plant Physiol 142(2):750–761

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Li B, Zhang C, Cao B, Qin G, Wang W, Tian S (2012) Brassinolide enhances cold stress tolerance of fruit by regulating plasma membrane proteins and lipids. Amino Acids 43(6):2469–2480

    Article  PubMed  CAS  Google Scholar 

  • Liu W, Hildebrand DF, Collins GB (1995) Auxin-regulated changes of fatty acid content and composition in soybean zygotic embryo cotyledons. Plant Sci 106(1):31–42

    Article  CAS  Google Scholar 

  • Maatta S, Scheu B, Roth MR, Tamura P, Li M, Williams TD, Wang X, Welti R (2012) Levels of Arabidopsis thaliana leaf phosphatidic acids, phosphatidylserines, and most trienoate-containing polar lipid molecular species increase during the dark period of the diurnal cycle. Front Plant Sci 3 (49). doi:10.3389/fpls.2012.00049

  • McLoughlin F, Arisz SA, Dekker HL, Kramer G, de Koster CG, Haring MA, Munnik T, Testerink C (2013) Identification of novel candidate phosphatidic acid-binding proteins involved in the salt-stress response of Arabidopsis thaliana roots. Biochem J 450(3):573–581

    Article  PubMed  CAS  Google Scholar 

  • Ohlrogge JB, Jaworski JG (1997) Regulation of fatty acid synthesis. Annu Rev Plant Physiol Plant Mol Biol 48(1):109–136

    Article  PubMed  CAS  Google Scholar 

  • Pejchar P, Potocký M, Novotná Z, Veselková Š, Kocourková D, Valentová O, Schwarzerová K, Martinec J (2010) Aluminium ions inhibit the formation of diacylglycerol generated by phosphatidylcholine-hydrolysing phospholipase C in tobacco cells. New Phytol 188(1):150–160

    Article  PubMed  CAS  Google Scholar 

  • Peng Y, Zhang J, Cao G, Xie Y, Liu X, Lu M, Wang G (2010) Overexpression of a PLDα1 gene from Setaria italica enhances the sensitivity of Arabidopsis to abscisic acid and improves its drought tolerance. Plant Cell Rep 29(7):793–802

    Article  PubMed  CAS  Google Scholar 

  • Pleskot R, Pejchar P, Bezvoda R, Lichtscheidl IK, Wolters-Arts M, Marc J, Žárský V, Potocký M (2012) Turnover of phosphatidic acid through distinct signalling pathways affects multiple aspects of tobacco pollen tube tip growth. Front Plant Sci 3 (54). doi:10.3389/fpls.2012.00054

  • Pokotylo I, Kretinin S, Kravets V (2012) Role of phospholipase D in metabolic reactions of transgenic tobacco cax1 cells under the influence of salt stress. Cytol Genetics 46(3):131–135

    Article  Google Scholar 

  • Pokotylo I, Pejchar P, Potocký M, Kocourková D, Krčková Z, Ruelland E, Kravets V, Martinec J (2013) The plant non-specific phospholipase C gene family. Novel competitors in lipid signalling. Prog Lipid Res 52(1):62–79

    Article  PubMed  CAS  Google Scholar 

  • Rainteau D, Humbert L, Delage E, Vergnolle C, Cantrel C, Maubert M-A, Lanfranchi S, Maldiney R, Collin S, Wolf C, Zachowski A, Ruelland E (2012) Acyl chains of phospholipase D transphosphatidylation products in Arabidopsis cells: a study using multiple reactions monitoring mass spectrometry. PLoS ONE 7(7):e41985

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Román Á, Andreu V, Hernández ML, Lagunas B, Picorel R, Martínez-Rivas JM, Alfonso M (2012) Contribution of the different omega-3 fatty acid desaturase genes to the cold response in soybean. J Exp Bot 63(13):4973–4982

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruiz-López N, Sayanova O, Napier JA, Haslam RP (2012) Metabolic engineering of the omega-3 long chain polyunsaturated fatty acid biosynthetic pathway into transgenic plants. J Exp Bot 63(7):2397–2410

    Article  PubMed  Google Scholar 

  • Siaut M, Cuine S, Cagnon C, Fessler B, Nguyen M, Carrier P, Beyly A, Beisson F, Triantaphylides C, Li-Beisson Y, Peltier G (2011) Oil accumulation in the model green alga Chlamydomonas reinhardtii: characterization, variability between common laboratory strains and relationship with starch reserves. BMC Biotechnol 11(1):7

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sudriá C, Palazón J, Cusidó R, Bonfill M, Piñol MT, Morales C (2001) Effect of benzyladenine and indolebutyric acid on ultrastructure, glands formation, and essential oil accumulation in Lavandula dentata plantlets. Biol Plant 44(1):1–6

    Article  Google Scholar 

  • Tan H, Yang X, Zhang F, Zheng X, Qu C, Mu J, Fu F, Li J, Guan R, Zhang H, Wang G, Zuo J (2011) Enhanced seed oil production in canola by conditional expression of Brassica napus LEAFY COTYLEDON1 and LEC1-LIKE in developing seeds. Plant Physiol 156(3):1577–1588

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Tang M, Guschina IA, O’Hara P, Slabas AR, Quant PA, Fawcett T, Harwood JL (2012) Metabolic control analysis of developing oilseed rape (Brassica napus cv Westar) embryos shows that lipid assembly exerts significant control over oil accumulation. New Phytol 196(2):414–426

    Article  PubMed  CAS  Google Scholar 

  • Voelker T, Kinney AJ (2001) Variations in the biosynthesis of seed-storage lipids. Annu Rev Plant Physiol Plant Mol Biol 52(1):335–361

    Article  PubMed  CAS  Google Scholar 

  • Wang G, Ryu S, Wang X (2012) Plant phospholipases: an overview. Lipases and phospholipases. In: Sandoval G (ed), vol 861. Methods in molecular biology. Humana Press, pp 123–137

  • Wimalasekera R, Pejchar P, Holk A, Martinec J, Scherer GFE (2010) Plant phosphatidylcholine-hydrolyzing phospholipases C NPC3 and NPC4 with roles in root development and brassinolide signaling in Arabidopsis thaliana. Mol Plant 3(3):610–625

    Article  PubMed  CAS  Google Scholar 

  • Xia X-J, Huang L-F, Zhou Y-H, Mao W-H, Shi K, Wu J-X, Asami T, Chen Z, Yu J-Q (2009) Brassinosteroids promote photosynthesis and growth by enhancing activation of Rubisco and expression of photosynthetic genes in Cucumis sativus. Planta 230(6):1185–1196

    Article  PubMed  CAS  Google Scholar 

  • yoon Jeong S, Park C, Kim M-K, Jun Nam S, Hong J, Kim S-K (2012) Effect of lysophosphatidylethanolamine and brassinosteroids on development of Arabidopsis roots. J Plant Biol 55(2):178–184

    Article  Google Scholar 

  • Zhang Z, Ramirez J, Reboutier D, Brault M, Trouverie J, Pennarun A-M, Amiar Z, Biligui B, Galagovsky L, Rona J-P (2005) Brassinosteroids regulate plasma membrane anion channels in addition to proton pumps during expansion of Arabidopsis thaliana cells. Plant Cell Physiol 46(9):1494–1504

    Article  PubMed  CAS  Google Scholar 

  • Zhang T, Song Y, Liu Y, Guo X, Zhu C, Wen F (2008) Overexpression of phospholipase Dα gene enhances drought and salt tolerance of Populus tomentosa. Chin Sci Bull 53(23):3656–3665

    Article  CAS  Google Scholar 

  • Zhang A, Zhang J, Ye N, Cao J, Tan M, Zhang J, Jiang M (2010) ZmMPK5 is required for the NADPH oxidase-mediated self-propagation of apoplastic H2O2 in brassinosteroid-induced antioxidant defence in leaves of maize. J Exp Bot 61(15):4399–4411

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zhang J, Liu H, Sun J, Li B, Zhu Q, Chen S, Zhang H (2012) Arabidopsis fatty acid desaturase FAD2 is required for salt tolerance during seed germination and early seedling growth. PLoS ONE 7(1):e30355

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Institute of Agriculture NAAS for providing seeds of B. napus cv. Magnat plants. We are also grateful to V.P. Grahov for the help with HPLC analysis. This work was supported by NAS of Ukraine (Grants No. 18–12 and No. 9.1–12).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Kravets.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pokotylo, I.V., Kretynin, S.V., Khripach, V.A. et al. Influence of 24-epibrassinolide on lipid signalling and metabolism in Brassica napus . Plant Growth Regul 73, 9–17 (2014). https://doi.org/10.1007/s10725-013-9863-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-013-9863-y

Keywords

Navigation