Skip to main content
Log in

Effects of silicon on growth processes and adaptive potential of barley plants under optimal soil watering and flooding

  • Original Paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Barley (Hordeum vulgare L.) was grown in pots with brown loess soil and highly soluble amorphous silicon dioxide as the source of monosilicic acid to examine its influence on plant growth and adaptive potential under optimal soil watering and flooding. The adaptive potential of plants was estimated by the concentration of the thiobarbituric acid reactive substances (TBARs) as well as superoxide dismutase (SOD), guaiacol peroxidase (GPX) and ascorbate peroxidase (AsP) activities. Application of amorphous silica to the soil increased the Si content in barley shoots and roots and stimulated their growth and biomass production under optimal soil watering. Soil flooding suppressed the growth both of the (−Si)- and (+Si)-plants. The intensity of oxidative destruction estimated by the concentration of TBARs was lower in the roots and leaves of the (+Si)-plants. Soil flooding induced SOD activity in the roots and in the leaves of the (−Si;+flooding) and (+Si;+flooding)-plants, but no significant differences were observed due to the Si treatment. GPX activity in the roots of (+Si)-plants was higher than in the (−Si)-ones under optimal soil watering, but under soil flooding no differences between (+Si)- and (−Si)-treatments were observed. AsP activity was not influenced by Si treatment neither under optimal soil watering nor under flooding. Thus, application of Si stimulates growth processes of barley shoots and roots under optimal soil watering and decreases intensity of oxidative destruction under soil flooding without significant changes in the activities of antioxidant enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Balakhnina TI, Gavrilov AB, Wlodarczyk TM, Borkowska A, Nosalewicz M, Fomina IR (2009) Dihydroquercetin protects barley seeds against mould and increases seedling adaptive potential under soil flooding. Plant Growth Regul 57:127–135

    Article  CAS  Google Scholar 

  • Balakhnina T, Bennicelli R, Stepniewska Z, Stepniewski W, Fomina I (2010) Oxidative damage and antioxidant defense system in leaves of Vicia faba major L. cv. Bartom during soil flooding and subsequent drainage. Plant Soil 327:293–301

    Article  CAS  Google Scholar 

  • Belanger RR (2005) The role silicon in plant–pathogen interaction: toward universal model. In: Korndorfer GH (ed) Proceedings of the 3rd Silicon agricultural conference. Universodade Federal de Umberlandia, Umberlandia, pp 34–40

    Google Scholar 

  • Bennett DM (1982a) An ultrastructural study on the development of silicified tissues in the leaf tip of barley (Hordeum sativum Jess.). Ann Bot 50:229–237

    CAS  Google Scholar 

  • Bennett DM (1982b) Silicon deposition in the roots of Hordeum sativum Jess., Arena sativa L. and Triticum aestivum L. Ann Bot 50:239–245

    Google Scholar 

  • Bennicelli RP, Szfafranek-Nakonieczna A, Wolinska A, Stepniewska Z, Bogudzinska M (2009) Influence of pesticide (glyphosate) on dehydrogenase activity, pH, Eh and gases production in soil (laboratory conditions). Int Agrophys 23:117–122

    CAS  Google Scholar 

  • Biel KY, Matichenkov VV, Fomina IR (2008) Protective role of silicon in living systems. In: Martirosyan DM (ed) Functional foods for chronic diseases. D&A Inc., Richardson, pp 208–231

    Google Scholar 

  • Blanke MM, Cooke DT (2004) Effects of flooding and drought on stomatal activity, transpiration, photosynthesis, water potential and water channel activity in strawberry stolons and leaves. Plant Growth Regul 42:153–160

    Article  CAS  Google Scholar 

  • Cherif M, Asselin A, Belanger RR (1994) Defense responses induced by soluble silicon in cucumber roots infected by Pythium spp. Phytopathol 84:236–242

    Article  CAS  Google Scholar 

  • Chiba Y, Mitani M, Yamaji N, Ma JF (2009) HvLsi1 is a silicon influx transporter in barley. Plant J 57:810–818

    Article  PubMed  CAS  Google Scholar 

  • Chirkova TV (1988) Puti adaptatsii rastenii k gipoksii i anoksii. (Pathways of plant adaptation to hypoxia and anoxia). Leningrad State University, Leningrad

  • Elliot CL, Snyder GS (1991) Autoclave-induced digestion for the colorimetric determination of silicon in rice straw. J Agric Food Chem 39:1118–1119

    Article  Google Scholar 

  • Emadian SF, Newton RJ (1989) Growth enhancement of loblolly pine (Pinus taeda L.) seedlings by silicon. J Plant Physiol 134:98–103

    Article  CAS  Google Scholar 

  • Epstein E (1999) Silicon. Ann Rev Plant Physiol Plant Mol Biol 50:641–664

    Article  CAS  Google Scholar 

  • Gavrilenko VF, Ladygina ME, Handobina LM (1975) Opredelenie peroksidaznoi funktsii: Metod Boyarkina (Evaluation of the peroxidase function: the method of Boyarkin). In: Rubin BA (ed) Bol’shoi praktikum po fiziologii rastenii (Big practical work in plant physiology). Visshaya Shkola, Moscow, pp 284–286

    Google Scholar 

  • Giannopolitis CN, Ries SK (1977) Superoxide dismutases. I. Occurrence in higher plants. Plant Physiol 59:309–314

    Article  PubMed  CAS  Google Scholar 

  • Glinski J, Stepniewski W (1985) Soil aeration and its role for plants. CRC, Boca Raton

    Google Scholar 

  • Gong H, Zhu X, Chen K, Wang S, Zhang C (2005) Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Sci 169:313–321

    Article  CAS  Google Scholar 

  • Gong HJ, Chen KM, Zhao ZG, Chen GC, Zhou WJ (2008) Effects of silicon on defense of wheat against oxidative stress under drought at different developmental stages. Biol Plant 52:592–596

    Article  CAS  Google Scholar 

  • Gunes A, Inal A, Bagci EG, Coban S, Sahin O (2007) Silicon increases boron tolerance and reduces oxidative damage of wheat grown in soil with excess boron. Biol Plant 51:571–574

    Article  CAS  Google Scholar 

  • Hammond KE, Evans DE, Hodson MJ (1995) Aluminium/silicon interactions in barley (Hordeum vulgare L.) seedlings. Plant Soil 173:89–95

    Article  CAS  Google Scholar 

  • Hattori T, Inanaga S, Tanimoto E, Lux A, Luxova M, Sugimoto Y (2003) Silicon-induced changes in viscoelastic properties of sorghum root cell walls. Plant Cell Physiol 44:743–749

    Article  PubMed  CAS  Google Scholar 

  • Hattori T, Inanaga S, Araki H, An P, Morita S, Luxova M, Lux A (2005) Application of silicon enhanced drought tolerance in Sorghum bicolor. Physiol Plant 123:459–466

    Article  CAS  Google Scholar 

  • Hayward DM, Parry DW (1973) Electron-probe microanalysis studies of silica distribution in barley (Hordeum sativum L.). Ann Bot 37:579–591

    CAS  Google Scholar 

  • Hayward DM, Parry DW (1975) Scanning electron microscopy of silica deposition in the leaves of barley (Hordeum sativum L.). Ann Bot 39:1003–1009

    CAS  Google Scholar 

  • Hayward DM, Parry DW (1980) Scanning electron microscopy of silica deposits in the culms, floral bracts and awns of barley (Hordeum sativum Jess). Ann Bot 46:541–548

    Google Scholar 

  • Hodson MJ (1986) Silicon deposition in the roots, culm and leaf of Phalaris canariensis L. Ann Bot 58:167–177

    CAS  Google Scholar 

  • Hodson MJ, Sangster AG (1989) X-ray microanalysis of the seminal root of Sorghum bicolor with particular reference to silicon. Ann Bot 64:659–675

    Google Scholar 

  • Hodson MJ, White PJ, Mead A, Broadley MR (2005) Phylogenetic variation in the silicon composition of plants. Ann Bot 96(6):1027–1046

    Article  PubMed  CAS  Google Scholar 

  • Iler RK (1979) The chemistry of silica. Wiley Press, New York

    Google Scholar 

  • Jackson MB (1991) Regulation of water relationships in flooded plants by ABA from leaves, roots and xylem sap. In: Davies WJ, Jones HG (eds) Abscisic acid: physiology and biochemistry. Bios Scientific, Oxford, pp 217–226

    Google Scholar 

  • Jackson MB, Drew MC (1984) Effects of flooding on growth and metabolism of herbaceous plants. In: Kozlowski TT (ed) Flooding and plant growth. Academic Press, Orlando, pp 47–128

    Google Scholar 

  • Kalashnikov YuE, Zakrzhevsky DA, Balakhnina TI (1994) Effect of soil hypoxia on activation of oxygen and the system of protection from oxidative destruction in roots and leaves of Hordeum vulgare L. Russ J Plant Physiol 41:583–588

    CAS  Google Scholar 

  • Liang Y, Chen Q, Liu Q, Zhang W, Ding R (2003) Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgare L.). J Plant Physiol 160:1157–1164

    Article  PubMed  CAS  Google Scholar 

  • Liang Y, Sun W, Zhu YG, Christie P (2007) Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants. Environ Pollution 147:422–428

    Article  CAS  Google Scholar 

  • Lux A, Luxova M, Abe J, Tanimoto E, Hattori T, Inanaga S (2003) The dynamics of silicon deposition in the sorghum root endodermis. New Phytol 158:437–441

    Article  CAS  Google Scholar 

  • Ma JF (2003) Function of silicon in higher plants. In: Muller WEG (ed) Progress in molecular and subcellular biology. Springer, Berlin, pp 127–147

    Google Scholar 

  • Ma JF (2004) Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Sci Plant Nutr 50:11–18

    Article  CAS  Google Scholar 

  • Ma JF, Takahashi E (2002) Soil, fertilizer, and plant silicon research in Japan. Elsevier, The Netherlands

    Google Scholar 

  • Ma JF, Yamaji N (2006) Silicon uptake and accumulation in higher plants. Trends Plant Sci 11:392–397

    Article  PubMed  CAS  Google Scholar 

  • Ma JF, Goto S, Tamai K, Ichii M (2001) Role of root hairs and lateral roots in silicon uptake by rice. Plant Physiol 127:1773–1780

    Article  PubMed  CAS  Google Scholar 

  • Ma JF, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M, Ishiguro M, Murata Y, Yano M (2006) A silicon transporter in rice. Nature 440:688–691

    Article  PubMed  CAS  Google Scholar 

  • Matichenkov VV, Bocharnikova EA (2004) Si in horticultural industry. In: Dris R, Jain SM (eds) Plant mineral nutrition and pesticide management. Production practices and quality assessment of food crops. Kluwer Academic Press, Amsterdam, pp 217–239

    Chapter  Google Scholar 

  • Matichenkov VV, Kosobryukhov AA (2004) Si effect on the plant resistance to salt toxicity. In: Proceedings of the 13th International soil conservation organization conference (ISCO). Brisbane, pp 287–295

  • Matichenkov VV, YaM Ammosova, Bocharnikova EA (1997) The method for determination of plant available silica in soil. Agrochem 1:76–84

    Google Scholar 

  • Matichenkov VV, Calvert DV, Snyder GH (2000) Prospective silicon fertilization for citrus in Florida. Proc. Soil Crop Sci Florida 59:137–141

    Google Scholar 

  • Matichenkov VV, Bocharnikova EA, Kosobryukhov AA, Biel KY (2008) Mobile forms of silicon in plants. Doklady Biol Sci 418:279–281

    Article  Google Scholar 

  • Mitani N, Ma JF (2005) Uptake system of silicon in different plant species. J Exp Bot 56:1255–1261

    Article  PubMed  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  PubMed  CAS  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Ranganathan S, Suvarchala V, Rajesh YBRD, Shrinivasa Prasad M, Padmakumari AP, Voleti SR (2006) Effects of silicon sources on its deposition, chlorophyll content, and disease and pest resistance in rice. Biol Plant 50:713–716

    Article  CAS  Google Scholar 

  • Savant NK, Snyder GH, Korndorfer GH (1997) Silicon management and sustainable rice production. Adv Agron 58:151–199

    Article  CAS  Google Scholar 

  • Snyder GH, Matichenkov VV, Datnoff LE (2006) Silicon. In: Barker AV, Pibeam DJ (eds) Handbook of plant nutrition. Massachusetts University, Massachusetts, pp 551−568

  • Sokolova TA (1985) Minerali v pochvah vlazhnih zon SSSR (Clay minerals in soils of humid zones of the USSR). Nauka, Novosibirsk

    Google Scholar 

  • Uchiyama M, Mihara M (1978) Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal Biochem 86:287–297

    Article  Google Scholar 

  • Voronkov MG, Zelchan GI, Lukevits AY (1978) Kremnii i zhizn (Silicon and life). Zinatne, Riga

    Google Scholar 

  • Walker CD, Lance RCM (1991) Silicon accumulation and 13C composition as indices of water-use efficiency in barley cultivars. Aust J Plant Physiol 18:427–434

    Article  CAS  Google Scholar 

  • Waterkeyn L, Bientait A, Peeters A (1982) Callose et silice epidermiques rapports avec la transpiration culticulaire. La Cellule 73:263–287

    Google Scholar 

  • Yordanova RY, Popova LP (2007) Flooding-induced changes in photosynthesis and oxidative status in maize plants. Acta Physiol Plant 29:535–541

    Article  CAS  Google Scholar 

  • Zakrzhevsky DA, Balakhnina TI, Stepniewski W, Stepniewska S, Bennicelli RP, Lipiec J (1995) Oxidation and growth processes in roots and leaves of higher plants at different oxygen availability in soil. Russ J Plant Physiol 42:242–248

    Google Scholar 

  • Zhu Z, Wei G, Li J, Qian Q, Yu J (2004) Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.). Plant Sci 167:527–533

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamara I. Balakhnina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balakhnina, T.I., Matichenkov, V.V., Wlodarczyk, T. et al. Effects of silicon on growth processes and adaptive potential of barley plants under optimal soil watering and flooding. Plant Growth Regul 67, 35–43 (2012). https://doi.org/10.1007/s10725-012-9658-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-012-9658-6

Keywords

Navigation