Skip to main content
Log in

6-Benzylaminopurine treatment induces increased pubescence on wheat leaves

  • Original Paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

The epidermis of wheat (Triticum aestivum L.) leaves contains trichomes that contribute to resistance to insect pests and drought tolerance. In the present study, we examined the effects of 6-benzylaminopurine (BA) and methyl jasmonate (MeJA) treatment on trichome development on the leaves of wheat cv. Norin 61 seedlings. Without phytohormone treatment, trichomes on the adaxial leaf surface were short (90 μm) and their density was low (3.6 trichomes/mm2). Both BA and MeJA treatments significantly increased the density of trichomes, and there were no significant differences between the phytohormone treatments. BA treatment increased trichome length to five times as long as that in the control, whereas MeJA treatment did not significantly affect trichome length. Since BA treatment concurrently increased the DNA content of the nuclei in trichome cells, endoreduplication of the nuclei is probably involved in trichome enlargement. These results indicate that even wheat cultivars with short trichomes retain the mechanisms for trichome enlargement and stimuli such as BA application can induce increased pubescence on wheat leaves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BA:

6-benzylaminopurine

CDK:

Cyclin-dependent kinase

DAPI:

4′,6-diamidino-2-phenylindole

JA:

Jasmonic acid

MeJA:

Methyl jasmonate

PBS:

Phosphate buffered saline

References

  • Baroncelli S, Cavallini A, Lercari B, Cionini G, Rocca M, D’Amato F (1995) Light and gibberellic acid effects on cell elongation in the leaf epidermis of two durum wheat cultivars. J Genet Breed 49:297–302

    CAS  Google Scholar 

  • Boughton AJ, Hoover K, Felton GW (2005) Methyl jasmonate application induces increased densities of glandular trichomes on tomato, Lycopersicon esculentum. J Chem Ecol 31:2211–2216. doi:10.1007/s10886-005-6228-7

    Article  PubMed  CAS  Google Scholar 

  • Dobrovolskaya O, Pshenichnikova TA, Arbuzova VS, Lohwasser U, Röder MS, Börner A (2007) Molecular mapping of genes determining hairy leaf character in common wheat with respect to other species of the Triticeae. Euphytica 155:285–293. doi:10.1007/s10681-006-9329-7

    Article  CAS  Google Scholar 

  • Francis D, Sorrell DA (2001) The interface between the cell cycle and plant growth regulators: a mini review. Plant Growth Regul 33:1–12. doi:10.1023/A:1010762111585

    Article  CAS  Google Scholar 

  • Gao J, Hofstra G, Fletcher RA (1988) Anatomical changes induced by triazoles in wheat seedlings. Can J Bot 66:1178–1185. doi:10.1139/b88-168

    Article  CAS  Google Scholar 

  • Griffiths PD, Ougham HJ, Jones RN (1994) Genotypic and environmental effects on endopolyploidy in the epidermal tissues of Lolium perenne L. and Lolium multiflorum Lam. New Phytol 128:339–345. doi:10.1111/j.1469-8137.1994.tb04018.x

    Article  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Calif Agric Exp Sta Circular 347

  • Hoxie RP, Wellso SG, Webster JA (1975) Cereal leaf beetle response to wheat trichome length and density. Environ Entomol 4:365–370

    Google Scholar 

  • Kobayashi H, Masaoka Y, Takahashi Y, Ide Y, Sato S (2007) Ability of salt glands in Rhodes grass (Chloris gayana Kunth) to secrete Na+ and K+. Soil Sci Plant Nutr 53:764–771. doi:10.1111/j.1747-0765.2007.00192.x

    Article  CAS  Google Scholar 

  • Kobayashi H, Yanaka M, Ikeda TM (2010) Exogenous methyl jasmonate alters trichome density on leaf surfaces of Rhodes grass (Chloris gayana Kunth). J Plant Growth Regul 29:506–511. doi:10.1007/s00344-010-9161-0

    Article  CAS  Google Scholar 

  • Larkins BA, Dilkes BP, Dante RA, Coelho CM, Woo YM, Liu Y (2001) Investigating the hows and whys of DNA endoreduplication. J Exp Bot 52:183–192. doi:10.1093/jexbot/52.355.183

    Article  PubMed  CAS  Google Scholar 

  • Larson-Rabin Z, Li Z, Masson PH, Day CD (2009) FZR2/CCS52A1 expression is a determinant of endoreduplication and cell expansion in Arabidopsis. Plant Physiol 149:874–884. doi:10.1104/pp.108.132449

    Article  PubMed  CAS  Google Scholar 

  • Levin DA (1973) The role of trichomes in plant defense. Q Rev Biol 48:3–15

    Article  Google Scholar 

  • Maes L, Inzé D, Goossens A (2008) Functional specialization of the TRANSPARENT TESTA GLABRA1 network allows differential hormonal control of laminal and marginal trichome initiation in Arabidopsis rosette leaves. Plant Physiol 148:1453–1464. doi:10.1104/pp.108.125385

    Article  PubMed  CAS  Google Scholar 

  • Maes L, Van Nieuwerburgh FCW, Zhang Y, Reed DW, Pollier J, Vande Casteele SRF, Inzé D, Covello PS, Deforce DLD, Goossens A (2011) Dissection of the phytohormonal regulation of trichome formation and biosynthesis of the antimalarial compound artemisinin in Artemisia annua plants. New Phytol 189:176–189. doi:10.1111/j.1469-8137.2010.03466.x

    Article  PubMed  CAS  Google Scholar 

  • Melaragno JE, Mehrotra B, Coleman AW (1993) Relationship between endopolyploidy and cell size in epidermal tissue of Arabidopsis. Plant Cell 5:1661–1668. doi:10.1105/tpc.5.11.1661

    Article  PubMed  Google Scholar 

  • Ni X, Quisenberry SS (1997) Effect of wheat leaf epicuticular structure on host selection and probing rhythm of Russian wheat aphid (Homoptera: Aphididae). J Econ Entomol 90:1400–1407

    Google Scholar 

  • Ramadan T, Flowers TJ (2004) Effects of salinity and benzyl adenine on development and function of microhairs of Zea mays L. Planta 219:639–648. doi:10.1007/s00425-004-1269-7

    Article  PubMed  CAS  Google Scholar 

  • Reynolds M, Skovmand B, Trethowan R, Pfeiffer W (1999) Evaluating a conceptual model for drought tolerance. In: Ribaut J-M, Poland D (eds) Molecular approaches for the genetic improvement of cereals for stable production in water-limited environments. CIMMYT, Mexico, pp 49–53

    Google Scholar 

  • Rosiak M, Polit JT, Maszewski J (2002) Effects of 6-dimethylaminopurine, 2-aminopurine, olomoucine and sodium vanadate on DNA endoreduplication in primary roots of Pisum sativum. Biol Plant 45:205–211. doi:10.1023/A:1015184320536

    Article  CAS  Google Scholar 

  • Schellmann S, Hülskamp M (2005) Epidermal differentiation: trichomes in Arabidopsis as a model system. Int J Dev Biol 49:579–584. doi:10.1387/ijdb.051983ss

    Article  PubMed  Google Scholar 

  • Sugimoto-Shirasu K, Roberts K (2003) “Big it up”: endoreduplication and cell-size control in plants. Curr Opin Plant Biol 6:544–553. doi:10.1016/j.pbi.2003.09.009

    Article  PubMed  CAS  Google Scholar 

  • Sugiura H (2004) Effects of 6-benzylaminopurine and ethephon applications on flowering and morphology in summer-to-autumn-flowering Chrysanthemum under open field conditions. J Pestic Sci 29:308–312. doi:10.1584/jpestics.29.308

    Article  CAS  Google Scholar 

  • Szymanski DB, Marks MD (1998) GLABROUS1 overexpression and TRIPTYCHON alter the cell cycle and trichome cell fate in Arabidopsis. Plant Cell 10:2047–2062. doi:10.1105/tpc.10.12.2047

    Article  PubMed  CAS  Google Scholar 

  • Taketa S, Chang CL, Ishii M, Takeda K (2002) Chromosome arm location of the gene controlling leaf pubescence of a Chinese local wheat cultivar ‘Hong-mang-mai’. Euphytica 125:141–147. doi:10.1023/A:1015812907111

    Article  CAS  Google Scholar 

  • Traw MB, Bergelson J (2003) Interactive effects of jasmonic acid, salicylic acid, and gibberellin on induction of trichomes in Arabidopsis. Plant Physiol 133:1367–1375. doi:10.1104/pp.103.027086

    Article  PubMed  CAS  Google Scholar 

  • Wagner GJ, Wang E, Shepherd RW (2004) New approaches for studying and exploiting an old protuberance, the plant trichome. Ann Bot 93:3–11. doi:10.1093/aob/mch011

    Article  PubMed  CAS  Google Scholar 

  • Wasternack C (2007) Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann Bot 100:681–697. doi:10.1093/aob/mcm079

    Article  PubMed  CAS  Google Scholar 

  • Webster JA, Inayatullah C, Hamissou M, Mirkes KA (1994) Leaf pubescence effects in wheat on yellow sugarcane aphids and greenbugs (Homoptera: Aphididae). J Econ Entomol 87:231–240

    Google Scholar 

  • Werker E (2000) Trichome diversity and development. Adv Bot Res 31:1–35. doi:10.1016/S0065-2296(00)31005-9

    Article  Google Scholar 

  • Werner T, Schmülling T (2009) Cytokinin action in plant development. Curr Opin Plant Biol 12:527–538. doi:10.1016/j.pbi.2009.07.002

    Article  PubMed  CAS  Google Scholar 

  • Wildermuth MC (2010) Modulation of host nuclear ploidy: a common plant biotroph mechanism. Curr Opin Plant Biol 13:449–458. doi:10.1016/j.pbi.2010.05.005

    Article  PubMed  CAS  Google Scholar 

  • Xia J, Zhao H, Liu W, Li L, He Y (2009) Role of cytokinin and salicylic acid in plant growth at low temperatures. Plant Growth Regul 57:211–221. doi:10.1007/s10725-008-9338-8

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidekazu Kobayashi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kobayashi, H., Yanaka, M. & Ikeda, T.M. 6-Benzylaminopurine treatment induces increased pubescence on wheat leaves. Plant Growth Regul 67, 19–25 (2012). https://doi.org/10.1007/s10725-012-9656-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-012-9656-8

Keywords

Navigation