Skip to main content
Log in

Molecular mapping of genes determining hairy leaf character in common wheat with respect to other species of the Triticeae

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Two major genes controlling leaf pubescence were mapped on chromosomes 4BL (Hl1) and 7BS (Hl2 Aesp) in wheat (Saratovskaya 29) and a wheat/Aegilops introgression line (102/00I), respectively, together with quantitative trait loci (QTLs) determining hairiness of the leaf margin (QHl.ipk-4B, QHl.ipk-4D) and auricle (QPa.ipk-4B, QPa.ipk-4D) on the long arms of chromosomes 4B and 4D, respectively. The QTLs on chromosome 4D were contributed by a synthetic wheat and, therefore, originated from Aegilops tauschii. The homoeologous group 4 wheat/A. tauschii genes/QTLs detected in the present study were aligned with the barley pubescence genes Hln/Hsh and Hs b and the hairy peduncle rye gene Hp1. The locus seems to be pleiotropically responsible for the pubescence of different plant organs in different species of the Triticeae. Another homoeologous series may be present on the short arms of the homoeologous group 7 chromosomes, based on the results of an allelic test cross between the Chinese local cultivar Hong-mang-mai carrying Hl2 and the wheat/Aegilops speltoides introgression line 102/00I.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Blanco A, Bellomo MP, Cenci A, De Giovanni C, D’Ovidio R, Iacono E, Laddomada B, Pagnotta MA, Porceddu E, Sciancalepore A, Simeone R, Tanzarella OA (1998) A genetic linkage map of durum wheat. Theor Appl Genet 97:721–728

    Article  CAS  Google Scholar 

  • Börner A, Schäfer M, Schmidt A, Grau M, Vorwald J (2005) Geographical distribution of morphological characters in hexaploid wheat (Triticum aestivum L.). Plant Genet Res 3:360–372

    Article  Google Scholar 

  • Börner A, Schumann E, Fürste A, Cöster H, Leithold B, Röder MS, Weber WE (2002) Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet 105:921–936

    Article  PubMed  Google Scholar 

  • Clausen JD, Keck D, Hiesey WM (1940) Experimental studies on the nature of species I. The effect of varied environments of Western North American plants. Carnegie Inst Wash Publ 52:452

    Google Scholar 

  • Devos KM, Atkinson MD, Chinoy CN, Francis HA, Harcourt RL, Koebner RMD, Liu CJ, Masojc P, Xie DX, Gale MD (1993) Chromosomal rearrangements in the rye genome relative to that of wheat. Theor Appl Genet 85:673–680

    CAS  Google Scholar 

  • Dobrovolskaya O, Arbuzova VS, Lohwasser U, Röder MS, Börner A (2006) Microsatellite mapping of complementary genes for purple grain colour in bread wheat (Triticum aestivum L.). Euphytica 150:355–364

    Google Scholar 

  • Franckowiak JD (1997) Revised linkage maps for morphological markers in barley, Hordeum vulgare. Barley Genet Newsl 26:9–21

    Google Scholar 

  • Gaines EF, Carstens A (1926) The linkage of pubescent node and beard factors as evidenced by a cross between two varieties of wheat. J Agric Res 33:753–755

    Google Scholar 

  • Gallun RL, Roberts JJ, Finney RE, Patterson FL (1973) Leaf pubescence of field grown wheat: A deterrant to oviposition by the cereal leaf beetle. J Environ Qual 2:333–334

    Article  Google Scholar 

  • Huang XQ, Wang LX, Xu MX, Röder MS (2003) Microsatellite mapping of the powdery mildew resistance gene Pm5e in common wheat (Triticum aestivum L.). Theor Appl Genet 106:858–865

    PubMed  CAS  Google Scholar 

  • Khlestkina EK, Pestsova EG, Salina E, Röder MS, Arbuzova VS, Koval SF, Börner A (2002) Molecular mapping and tagging of wheat genes using RAPD, STS and SSR markers. Cell Mol Biol Lett 7:795–802

    PubMed  CAS  Google Scholar 

  • Korzun V, Malyshev S, Pickering RA, Börner A (1999) RFLP mapping of a gene for hairy leaf sheath using a recombinant line from Hordeum vulgare L. x Hordeum bulbosum L. cross. Genome 42:960–963

    Article  CAS  Google Scholar 

  • Korzun V, Malyshev S, Kartel N, Westermann T, Weber WE, Börner A (1998) A genetic linkage map of rye (Secale cereale L.). Theor Appl Genet 96:203–208

    Article  CAS  Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg I (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Google Scholar 

  • Langridge P, Karakousis A, Collins N, Kretschmer J, Manning S (1995) A consensus linkage map of barley. Mol Breed 1:389–395

    Article  CAS  Google Scholar 

  • Lapochkina IF, Iordanskaya IV, Yatchevskaya GL, Zhemchuzhina AI, Kovalenko ED, Solomatin DA, Kolomiets TM (2003) Identification of alien genetic material and genes of resistance to leaf rust in wheat (Triticum aestivum L.) stocks. In: Proc 10th Int Wheat Genet Symp. Istituto Sperimentale per la Cerealicoltura, Rome, Italy, pp 1190–1192

  • Love HH, Craig WT (1924) The inheritance of pubescent nodes in a cross between two varieties of wheat. J Agric Res 28:841–844

    Google Scholar 

  • Lundqvist UJ, Franckowiak D, Konishi T (1997) New and revised descriptions of barley genes. Barley Genet Newsl 26:22–516

    Google Scholar 

  • Maystrenko OI (1976) Identification and location of genes controlling leaf hairing in young plants of common wheat. Genetika 12:5–15

    Google Scholar 

  • Maystrenko OI (1992) Using of cytogenetic methods in studies of common wheat ontogenesis. In: Ontogenetics of higher plants. Shtiintsa, Kishinev, pp 98–114

  • McIntosh RA, Hart GE, Devos KM, Gale MD, Rogers WJ (1998) Catalogue of gene symbols for wheat. In: Slinkard AE (ed) Proc 9th Int Wheat Genet Symp. University Extension Press, University of Saskatchewan, pp 1–236

  • McIntosh RA, Yamazaki Y, Devos KM, Dubcovsky J, Rogers J, Appels R (2003) Catalogue of gene symbols for wheat http://www.grs.nig.ac.jp/wheat/komugi/genes/

  • Melz G, Thiele V (1989) Results of cytogenetic investigations in rye (Secale cereale L.). Arch Zuechtungsforschung 19:421–428

    Google Scholar 

  • Nelson JC (1997) QGENE: software for mapmaker-based genomic analysis and breeding. Mol Breed 3:239–245

    Article  CAS  Google Scholar 

  • Pickering RA, Hill AM, Kynast RG (1997) Characterization by RFLP analysis and genomic in situ hybridization of a recombinant and monosomic substitution plant derived from Hordeum vulgare L. x Hordeum bulbosum L. crosses. Genome 40:195–200

    CAS  PubMed  Google Scholar 

  • Plaschke J, Ganal MW, Röder MS (1995) Detection of genetic diversity in closely related bread wheat using microsatellite markers. Theor Appl Genet 91:1001–1007

    Article  CAS  Google Scholar 

  • Pshenichnikova TA, Lapochkina IF, Shchukina LV (2006) Inheritance of morphological and biochemical traits introgressed into common wheat Triticum aestivum L. from Aegilops speltoides. Genet Res Crop Evol doi 10.107/s10722-005-4499-2

  • Reynolds M, Skovmand B, Thretowan R, Pfeiffer W (1999) Evaluating a conceptual model for drought tolerance. In: Ribaut JM (ed) Using molecular markers to improve drought tolerance. CIMMYT, Mexico, DF, pp 49–53

    Google Scholar 

  • Ringlund K, Everson EH (1968) Leaf pubescence in common wheat and resistance to cereal leaf beetle. Crop Sci 8:705–710

    Article  Google Scholar 

  • Roberts JJ, Gallun RL, Patterson FL, Forster JE (1979) Effects of wheat leaf pubescence on Hessian fly. J Econ Entomol 72:211–214

    Google Scholar 

  • Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier M-H, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed  Google Scholar 

  • Skovmand B, Reynolds M, Lage J (2003) Collecting and managing wheat genetic resources and exploiting germplasm collections to find useful traits. In: Abstracts 1st Central Asian Wheat Conference of Almaty

  • Sourdille P, Cadalen T, Gaym G, Gill BS, Bernard M (2002) Molecular and physical mapping of genes affecting awning in wheat. Plant Breed 121:320–324

    Article  CAS  Google Scholar 

  • Thretowan RM, Reynolds MP, Skovmand B, van Ginkel M (1998) The effect of glume pubescence on floret temperature in wheat. Agron Abstracts 1998. ASA, Baltimore

    Google Scholar 

  • Taketa S, Chang CL, Ishii M, Takeda K (2002) Chromosome arm location of the gene controlling leaf pubescence of a Chinese local wheat cultivar ‘Hong-mang-mai’. Euphytica 125:141–147

    Article  CAS  Google Scholar 

  • Warham EJ (1988) Screening for kernel bunt (Tilletia indica) resistance in wheat, Triticale, rye, and barley. Can J Plant Pathol 10:57–70

    Article  Google Scholar 

  • Wellso SG, Hoxie RP (1982) The influence of environment on the expression of trichomes in wheat. Crop Sci 22:879–886

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. M. Ganal, Trait Genetics GmbH, Gatersleben, for generously providing the microsatellite markers as well as Renate Voss and Annette Marlow for excellent technical assistance. This research was supported partly by grant No. 05-04-48735 from the ‘Russian Foundation for Basic Research’ and by grant SB RAS (Complex integration project no. 5.8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Börner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dobrovolskaya, O., Pshenichnikova, T.A., Arbuzova, V.S. et al. Molecular mapping of genes determining hairy leaf character in common wheat with respect to other species of the Triticeae. Euphytica 155, 285–293 (2007). https://doi.org/10.1007/s10681-006-9329-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-006-9329-7

Keywords

Navigation