Skip to main content
Log in

Antioxidant enzymatic protection during tobacco leaf ageing is affected by cytokinin depletion

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Plant ageing and senescence are associated with increased levels of reactive oxygen species. Level of cytokinins, the apparent inhibitors of plant senescence, is controlled by their irreversible degradation catalysed by cytokinin oxidase/dehydrogenase (CKX). We investigated the CKX activity, cytokinin concentration, and activities of antioxidative enzymes in tobacco (Nicotiana tabacum L. cv. Samsun NN) overexpressing the Arabidopsis gene for AtCKX2, targeted for extracellular secretion pathway. The control and AtCKX2 plants differed substantially in their phenotypes. When the lowest leaves in controls became yellow all leaves in AtCKX2 tobacco still remained green. Activities of antioxidant enzymes decreased with leaf age in both tobacco plants except for ascorbate peroxidase (APX) in the old leaves and glutathione reductase (GR) in young leaves. Enhancement of GR activity at all leaf stages, an increase of superoxide dismutase and a decline of catalase in young leaves, as well as an increase of APX in the oldest leaves were observed in AtCKX2 plant compared to control. Similar changes were detected after determination of isoenzymes on zymograms. It is evident that AtCKX2 plants had postponed onset of senescence despite the significantly lowered level of cytokinins. Enhanced antioxidant protection, especially in the oldest leaves, could subsidise this phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

APX:

Ascorbate peroxidase

AtCKX2:

Transgenic tobacco overexpressing the Arabidopsis gene for CKX2

CAT:

Catalase

cisZ:

cis-zeatin

cisZ7G:

cis-zeatin-7-glucoside

CKX:

Cytokinin oxidase/dehydrogenase

DCPIP:

2,6-dichlorophenolindophenol

DTT:

Dithiotreitol

EDTA:

Ethylendiaminetetraacetic acid

GR:

Glutathione reductase

GSSG:

Oxidised glutathione

iP:

N6-(Δ2-isopentenyl)adenine

iP7G:

N6-(Δ2-isopentenyl)adenine-7-glucoside

MTT:

3(4,5-dimethyl-2-thiazolyl)-2,5diphenyl-2H-tetrazolium bromide

NBT:

3,3′-(3,3′-dimethoxy-4,4′-biphenylene)bis[2-(4-nitrophenyl)-5-phenyl-2H-tetrazolium chloride]

PAR:

Photosynthetically active radiation

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

TEMED:

N,N,N′,N′-tetramethylethylenediamine

XTT:

2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide, sodium salt

Z:

trans-zeatin

Z7G:

trans-zeatin-7-glucoside

References

  • Abarca D, Martín M, Sabater B (2001) Differential leaf stress responses in young and senescent leaf. Physiol Plant 113:409–415

    Article  PubMed  CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  PubMed  CAS  Google Scholar 

  • Armstrong DJ (1994) Cytokinin oxidase and the regulation of cytokinin degradation. In: Mok DWS, Mok MC (eds) Cytokinins: chemistry, activity, and function. CRC Press, Boca Raton, pp 139–154

    Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–284

    Article  PubMed  CAS  Google Scholar 

  • Blagoeva E, Dobrev PI, Malbeck J, Motyka V, Strnad M, Hanuš J, Vaňková R (2004) Cytokinin N-glucosylation inhibitors suppress deactivation of exogenous cytokinins in radish, but their effect on active endogenous cytokinins is counteracted by other regulatory mechanisms. Physiol Plant 121:215–222

    Article  PubMed  CAS  Google Scholar 

  • Boer J, Feierabend J (1974) Comparison of the effects of cytokinins on enzyme development in different cell compartment of the shoot organs of rye seedlings. Zeitschrift fur Pflanzenphysiologie 71:261–270

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Buchanan-Wollaston V (1997) The molecular biology of leaf senescence. J Exp Bot 48:181–199

    Article  Google Scholar 

  • Clarke SF, Guy PL, Burritt DJ, Jameson PE (2002) Changes in the activities of antioxidant enzymes in response to virus infection and hormone treatment. Physiol Plant 114:157–164

    Article  PubMed  CAS  Google Scholar 

  • Dertinger U, Schaz U, Shulze ED (2003) Age-dependence of the antioxidative system in tobacco with enhanced glutathione reductase activity or senescence-induced production of cytokinins. Physiol Plant 119:19–29

    Article  CAS  Google Scholar 

  • Dobrev P, Kamínek M (2002) Fast and efficient separation of cytokinins from auxin and abscisic acid and their purification using mixed-mode solid-phase extraction. J Chromatogr A 950:21–29

    Article  PubMed  Google Scholar 

  • Feng ZZ, Guo AH, Feng ZW (2003) Delay of senescence of detached cucumber cotyledons by triadimefon. Biol Plant 46:571–575

    Article  CAS  Google Scholar 

  • Foreman J, Demidchik V, Bothwell JHF, Mylona P, Miedema H, Torres MA, Linstead P, Costa S, Brownlee C, Jones JDG, Davies JM, Dolan L (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422:442–446

    Article  PubMed  CAS  Google Scholar 

  • Galuszka P, Frébort I, Šebela M, Peč P (2000) Degradation of cytokinins by cytokinin oxidases in plants. Plant Growth Regul 32:315–327

    Article  CAS  Google Scholar 

  • Galuszka P, Popelková H, Werner T, Frébortová J, Pospíšilová H, Mik H, Köllmer I, Schmülling T, Frébort I (2007) Biochemical characterization of cytokinin oxidases/dehydrogenases from Arabidopsis thaliana expressed in Nicotiana tabacum L. J Plant Growth Regul 26:255–267

    Article  CAS  Google Scholar 

  • Gan S, Amasino RM (1995) Inhibition of leaf senescence by autoregulated production of cytokinin. Science 270:1986–1988

    Article  PubMed  CAS  Google Scholar 

  • Gan S, Amasino RM (1996) Cytokinins in plant senescence: from spray and pray to clone and play. BioEssays 18:557–565

    Article  CAS  Google Scholar 

  • Gan S, Amasino RM (1997) Making sense of senescence. Plant Physiol 113:313–319

    PubMed  CAS  Google Scholar 

  • Gidrol X, Lin WS, Degousee N, Yip SF, Kush A (1994) Accumulation of reactive oxygen species and oxidation of cytokinin in germinating soybean seeds. Eur J Biochem 224:21–28

    Article  PubMed  CAS  Google Scholar 

  • Goldberg DM, Spooner RJ (1983) Glutathione reductase. In: Bergmayer HU (ed) Methods in enzymatic analysis, vol 3. Verlag Chemie, Weinheim, pp 259–265

    Google Scholar 

  • Gu R, Fu J, Guo S, Duan F, Wang Z, Mi G, Yuan L (2010) Comparative expression and phylogenetic analysis of maize cytokinin dehydrogenase/oxidase (CKX) gene family. J Plant Growth Regul 29:428–440

    Google Scholar 

  • Halliwell B, Gutteridge JMC (1999) Free radicals in biology and medicine. Oxford University Press, Oxford

    Google Scholar 

  • He P, Osaki M, Takebe M, Shinano T, Wasaki J (2005) Endogenous hormones and expression of senescence-related genes in different senescent types of maize. J Exp Bot 414:1117–1128

    Article  Google Scholar 

  • Jimenez A, Hernandez JA, Del Rio LA, Sevilla F (1997) Ascorbate-glutathione cycle in mitochondria and peroxisomes of pea leaves: changes induced by leaf senescence. Phyton-Annales Rei Botanicae 37:101–107

    CAS  Google Scholar 

  • Kamínek M, Březinová A, Gaudinová A, Motyka V, Vaňková R, Zažímalová E (2000) Purine cytokinins: a proposal of abbreviations. Plant Growth Regul 32:253–256

    Article  Google Scholar 

  • Krupinska K, Falk J, Humbeck K (2003) Genetic, metabolic and environmental factors associated with aging in plants. In: Osiewacz HD (ed) Aging of organisms. pp, Kluwer Academic Publishers, pp 55–78

    Google Scholar 

  • Kwak JM, Mori IC, Pei ZM, Leonhardt N, Torres MA, Dangl JL, Bloom RE, Bodde S, Jones JDG, Schroeder JI (2003) NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. EMBO J 22:2623–2633

    Google Scholar 

  • Lacan D, Baccou J-C (1998) High levels of antioxidant enzymes correlate with delayed senescence of nonnetted muskmelon fruits. Planta 204:377–382

    Article  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Leshem Y, Seri L, Levine A (2007) Induction of phosphoinositol 3-kinase-mediated endocytosis by salt stress leads to intracellular production of reactive oxygen species and salt tolerance. Plant J 51:185–197

    Article  PubMed  CAS  Google Scholar 

  • Lexa M, Genkov T, Malbeck J, Macháčková I, Brzobohatý B (2003) Dynamics of endogenous cytokinins pool in tobacco seedlings: a modelling approach. Annal Bot 91:585–597

    Article  CAS  Google Scholar 

  • Lu C, Lu Q, Zhang J, Kuang T (2001) Characterization of photosynthetic pigment composition, photosystem II photochemistry and thermal energy dissipation during senescence of wheat plants grown in the field. J Exp Bot 52:1805–1810

    Article  PubMed  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  PubMed  CAS  Google Scholar 

  • Mittler R, Zilinskas BA (1993) Detection of ascorbate peroxidase activity in native gels by inhibition of the ascorbate-dependent reduction of nitro blue tetrazolium. Anal Biochem 212:540–546

    Article  PubMed  CAS  Google Scholar 

  • Mok MC (1994) Cytokinins and plant development. In: Mok DWS, Mok MC (eds) Cytokinins: chemistry, activity and function. CRC Press, Boca Raton, pp 155–166

    Google Scholar 

  • Monshausen GB, Gilroy S (2009) Feeling green: mechanosensing in plants. Trend Cell Biol 19:228–235

    Article  Google Scholar 

  • Motyka V, Faiss M, Strnad M, Kamínek M, Schmülling T (1996) Changes in cytokinin content and cytokinin oxidase activity in response to derepression of ipt gene transcription in transgenic tobacco calli and plants. Plant Physiol 112:1035–1043

    PubMed  CAS  Google Scholar 

  • Motyka V, Vaňková R, Čapková V, Petrášek J, Kamínek M, Schmülling T (2003) Cytokinin-induced upregulation of cytokinin oxidase activity in tobacco includes changes in enzyme glycosylation and secretion. Physiol Plant 117:11–21

    Article  CAS  Google Scholar 

  • Mýtinová Z, Haisel D, Wilhelmová N (2006) Photosynthesis and protective mechanisms in transgenic tobacco leaves with overexpressed cytokinin oxidase/dehydrogenase and thus lowered cytokinin content during ageing. Photosynthetica 44:599–605

    Article  Google Scholar 

  • Mýtinová Z, Motyka V, Haisel D, Gaudinová A, Lubovská Z, Wilhelmová N (2010) Effect of abiotic stresses on the activity of antioxidative enzymes and contents of phytohormones in wild type and AtCKX2 transgenic tobacco plants. Biol Plant 54:461–470

    Article  Google Scholar 

  • Nakano Z, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplast. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Ohe M, Rapolu M, Mieda T, Miyagawa Y, Yabuta Y, Yoshimura K, Shigeoka S (2005) Decline in leaf photooxidative-stress tolerance with age in tobacco. Plant Sci 168:1487–1493

    Article  CAS  Google Scholar 

  • Pačes V, Werstiuk E, Hall RH (1971) Conversion of N6-isopentenyladenosine to adenosine by enzyme activity tobacco tissue. Plant Physiol 48:775–778

    Article  PubMed  Google Scholar 

  • Peñarrubia L, Moreno J (2002) Senescence in plants crops. In: Pessarakli M (ed) Handbook of plant and crop physiology. M Dekker Inc, New York-Basel, pp 181–203

    Google Scholar 

  • Petit-Paly G, Fanck T, Brisson L, Kevers C, Chénieux C, Rideau M (1999) Cytokinin modulates catalase activity and coumarin accumulation in in vitro cultures of tobacco. J Plant Physiol 155:9–15

    CAS  Google Scholar 

  • Potocký M, Jones MA, Bezvoda R, Smirnoff N, Žárský V (2007) Reactive oxygen species produced by NADPH oxidase are involved in pollen tube growth. New Phytol 174:742–751

    Article  PubMed  Google Scholar 

  • Procházková D, Wilhelmová N (2004) Changes in antioxidative protection in bean cotyledons during natural and continuous irradiation-accelerated senescence. Biol Plant 48:33–39

    Article  Google Scholar 

  • Procházková D, Wilhelmová N (2007) The capacity of antioxidant protection during modulated ageing of bean (Phaseolus vulgaris L.) cotyledons. I. The antioxidant enzyme activities. Cell Biochem Funct 25:87–95

    Article  PubMed  Google Scholar 

  • Procházková D, Sairam RK, Srivastava GC, Singh DV (2001) Oxidative stress and antioxidant activity as the basis of senescence in maize leaves. Plant Sci 161:765–771

    Article  Google Scholar 

  • Sairam RK, Singh DV, Srivastava GC (2003/2004) Changes in activities of enzymes in sunflower leaves of different ages. Biol Plant 47:61–66

    Google Scholar 

  • Scebba F, Sebastiani L, Vitagliano C (2001) Activities of antioxidant enzymes during senescence of Prunus armeniaca leaves. Biol Plant 44:41–46

    Article  CAS  Google Scholar 

  • Schmülling T, Werner T, Riefler M, Krupková E, Bertrina y Manns I (2003) Structure and function of cytokinin oxidase/dehydrogenase genes of maize, rice Arabidopsis and other species. J Plant Res 116:241–252

    Article  PubMed  Google Scholar 

  • Šmehilová M, Galuszka P, Bilyeu KD, Jaworek P, Kowalska M, Šebela M, Sedlářová M, English JT, Frébort I (2009) Subcellular localization and biochemical comparison of cytosolic and secreted cytokinin dehydrogenase enzymes from maize. J Exp Bot 60:2701–2712

    Article  PubMed  Google Scholar 

  • Synková H, Semorádová Š, Burketová L (2004) High content of endogenous cytokinins stimulates activity of enzymes and proteins involved in stress response in Nicotiana tabacum. Plant Cell Tissue Organ Cult 79:169–179

    Article  Google Scholar 

  • Synková H, Semorádová Š, Schnablová R, Witters E, Hušák M, Valcke R (2006) Cytokinin-induced activity of antioxidant enzymes in transgenic Pssu-ipt tobacco during plant ontogeny. Biol Plant 50:31–41

    Article  Google Scholar 

  • Takahama U, Hirotsu M, Oniki T (1999) Age-dependent changes in levels of ascorbic acid and chlorogenic acid, and activities of peroxidase and superoxide dismutase in the apoplast of tobacco leaves: mechanism of the oxidation of chlorogenic acid in the apoplast. Plant Cell Physiol 40:716–724

    CAS  Google Scholar 

  • Thomas DJ, Avenson TJ, Thomas JB, Herbert SK (1998) A cyanobacterium lacking Iron superoxide dismutase is sensitised to oxidative stress induced with methyl viologen but is not sensitised to oxidative stress induced with norflurazon. Plant Physiol 116:1593–1602

    Article  PubMed  CAS  Google Scholar 

  • Tichá I, Čáp F, Pacovská P, Hofman P, Haisel D, Čapková V, Schäffer C (1998) Culture on sugar medium enhances photosynthetic capacity and high light resistance of plant lets grown in vitro. Physiol Plant 102:155–162

    Article  Google Scholar 

  • Toyama T, Teramoto H, Takeba G, Tsuji H (1995) Cytokinin induces a rapid decreasing in the levels of mRNA for catalase, 3-hydroxy-3-methylglutaryl CoA reductase, lecithin and other unidentified proteins in etiolated cotyledons of cucumber. Plant Cell Physiol 36:1349–1359

    PubMed  CAS  Google Scholar 

  • Ukeda H, Maeda S, Ishii T, Sawamura M (1997) Spectrophotometric assay for superoxide dismutase based on tetrazolium salt 3′-{1-[(phenylamino)-carbonyl]-3, 4-tetrazolium}-bis(4-methoxy-6-nitro)benzenesulfonic acid hydrate reduction by xanthine–xanthine oxidase. Anal Biochem 251:206–209

    Article  PubMed  CAS  Google Scholar 

  • Van Staden J, Cook EL, Noodén LD (1988) Cytokinins and senescence. In: Noodén LD, Leopold AC (eds) Senescence and aging in plants. Academic Press, San Diego, pp 281–328

    Google Scholar 

  • Weng X-Y, Xu H-X, Jiang D-A (2005) Characteristics of gas exchange, chlorophyll fluorescence and expression of key enzymes in photosynthesis during leaf senescence in rice plants. Acta Botanica Sinica 47:560–566

    CAS  Google Scholar 

  • Werner T, Motyka V, Strand M, Schmülling T (2001) Regulation of plant growth by cytokinin. Proc Nat Acad Sci USA 98:10487–10492

    Article  PubMed  CAS  Google Scholar 

  • Werner T, Motyka V, Laucou V, Smets R, Van Onckelen H, Schmülling T (2003) Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite function of cytokinins in the regulation of shoot and root meristem activity. Plant Cell 15:2532–2550

    Article  PubMed  CAS  Google Scholar 

  • Werner T, Köllmer I, Bartrina I, Holst K, Schmülling T (2006) New insights into the biology of cytokinin degradation. Plant Biol 8:371–381

    Article  PubMed  CAS  Google Scholar 

  • Wilhelmová N, Procházková D, Macháčková I, Vágner M, Srbová M, Wilhelm J (2004) The role of cytokinins and ethylene in bean cotyledon senescence. The effect of free radicals. Biol Plant 48:523–529

    Article  Google Scholar 

  • Zimmermann P, Zentgraf U (2005) The correlation between oxidative stress and leaf senescence during plant development. Cell Mol Biol Lett 10:515–534

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Grant Agency of the Czech Republic (522/03/0312), the Grant Agency of the Academy of Sciences of the Czech Republic (IAA600380701), the Ministry of Education, Youth and Sports CR (LC 06034) and AVOZ50380511. The authors thank Dr. Miroslav Kamínek for critical reading of manuscript and Ms. Marie Korecká and Ms. Lenka Kolčabová for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naďa Wilhelmová.

Additional information

Z. Mýtinová and V. Motyka contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mýtinová, Z., Motyka, V., Haisel, D. et al. Antioxidant enzymatic protection during tobacco leaf ageing is affected by cytokinin depletion. Plant Growth Regul 65, 23–34 (2011). https://doi.org/10.1007/s10725-011-9571-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-011-9571-4

Keywords

Navigation