Skip to main content
Log in

Effects of sodium nitroprusside on callus induction and shoot regeneration in micropropagated Dioscorea opposita

  • Brief Communication
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

The effects of sodium nitroprusside (SNP) on callus induction and shoot regeneration of Dioscorea opposite Thunb. have been studied. Application of 40 μM of SNP depresses accumulation of H2O2 in tuber explants of Dioscorea opposita markedly. Supplementation of 40 μM of SNP to the Murashige and Skoog medium with combinations of benzylaminopurine (3 mg dm−3) and naphthaleneacetic acid (0.5 mg dm−3) reduces the browning of explants and increases the frequency of callus induction from tuber explants significantly. The regeneration frequency of adventitious shoot shows a significant increase in the presence of SNP. Further analysis indicates that treatment with 40 μM of SNP results in significant decreases in catalase and peroxidase activity, while increasing the activity of superoxide dismutase. Supplementation with 40 μM of SNP also promotes the accumulation of non-enzymic antioxidants, including proline and glutathione. The effects on callus induction and shoot regeneration promoted by SNP were reversed by the nitric oxide (NO) scavenger 2-(4-carboxyphenyl)- 4,4,5,5- tetramethylimidazoline-1-oxyl-3-oxide. These results indicate that the exogenously applied NO-donor SNP alleviates browning of tuber explants by reducing H2O2 accumulation, thereby promoting a higher in vitro proliferation frequency of D. opposita.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Anderson MD, Prasad TK, Stewart CR (1995) Changes in isozyme profiles of catalase, peroxidase, and glutathione reductase during acclimation to chilling in mesocotyls of Maize seedlings. Plant Physiol 109:1247–1257

    CAS  PubMed  Google Scholar 

  • Araki H, Shi L, Yakuwa T (1992) Effect of auxin, cytokinin and nitrogen concentration on morphogenesis of tissue-cultured shoot apex of Chinese yam (Dioscorea opposita Thunb.). J Jap Soc Hort Sci 60:851–857

    Article  CAS  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287

    Article  CAS  PubMed  Google Scholar 

  • Cakmak I, Horst WJ (1991) Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean. Physiol Plantarum 83:463–468

    Article  CAS  Google Scholar 

  • Carimi F, Zottini M, Costa A, Cattelan I, De Michele R, Terzi M, Lo Schiavo F (2005) NO signalling in cytokinin-induced programmed cell death. Plant Cell Environ 28:1171–1178

    Article  CAS  Google Scholar 

  • Clark D, Durner J, Navarre DA, Klessig DF (2000) Nitric oxide inhibition of tobacco catalase and ascorbate peroxidase. Mol Plant Microbe Interact 13:1380–1384

    Article  CAS  PubMed  Google Scholar 

  • Correa-Aragunde N, Graziano M, Chevalier C, Lamattina L (2006) Nitric oxide modulates the expression of cell cycle regulatory genes during lateral root formation in tomato. J Exp Bot 57:581–588

    Article  CAS  PubMed  Google Scholar 

  • Errabii T, Gandonou CB, Essalmani H, Abrini J, Idaomar M, Senhaji NS (2007) Effects of NaCl and mannitol induced stress on sugarcane (Saccharum sp.) callus cultures. Acta Physiol Plant 29:95–102

    Article  CAS  Google Scholar 

  • Foyer CH, Descourviers P, Kunert KJ (1994) Protection against oxygen radicals: an important defense mechanism in transgenic plants. Plant Cell Environ 17:507–523

    Article  CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (1986) Oxygen free radicals and iron in relation to biology and medicine:some promblems and concept. Arch Biochem Biophys 246:501–514

    Article  CAS  PubMed  Google Scholar 

  • Han XJ, Yang HQ, Duan KX, Zhang XR, Zhao HZ, You SZ, Jiang QQ (2008) Sodium nitroprusside promotes multiplication and regeneration of Malus hupehensis in vitro plantlets. Plant Cell Tiss Org Cult 96:29–34

    Article  Google Scholar 

  • Inagaki N, Komatsubara S, Oka Y, Maekawa S, Terabun M (1985) Clonal propagation through bulbils in Dioscorea opposita Thunb. cv. Yamatoimo. J Jap Soc Holt Sci 54:66–74

    Article  Google Scholar 

  • Kohmura H, Araki H, Imoto M (1995) Micropropagation of ‘Yamatoimo’ Chinese yam (Dioscorea opposita) from immature leaves. Plant Cell Tiss Org Cult 40:271–276

    Article  Google Scholar 

  • Kolberz Z, Bartha B, Erdei L (2008) Exogenous auxin-induced NO synthesis is nitrate reductase-associated in Arabidopsis thaliana root primordial. J Plant Physiol 165:967–975

    Article  Google Scholar 

  • Laspina NV, Groppa MD, Tomaro ML, Benavides MP (2005) Nitric oxide protects sunflower leaves against Cd-induced oxidative stress. Plant Sci 169:323–330

    Article  CAS  Google Scholar 

  • Lauzer D, Laublin G, Vincent G, Cappadocia M (1992) In vitro propagation and cytology of wild yams, Dioscorea abyssinica Hoch. and D. mangenotiana Miege. Plant Cell Tiss Org Cult 28:215–223

    Article  Google Scholar 

  • Leshem YY, Wills RBH, Ku VVV (1998) Evidence for the function of the free radical gas–nitric oxide (NO·)—as an endogenous maturation and senescence regulating factor in higher plants. Plant Physiol Bioch 36:825–833

    Article  CAS  Google Scholar 

  • Libourel IGL, Bethke PC, De Michele R, Jones RL (2006) Nitric oxide gas stimulates germination of dormant Arabidopsis seeds: use of a flow-through apparatus for delivery of nitric oxide. Planta 223:813–820

    Article  CAS  PubMed  Google Scholar 

  • Lombardo MC, Graziano M, Polacco J, Lamattina L (2006) Nitric oxide functions as a positive regulator of root hair development. Plant Signal Behav 1:28–33

    PubMed  Google Scholar 

  • Maggio A, Miyazaki S, Veronese P, Fujita T, Ibeas JI, Damsz B, Narasimhan ML, Hasegawa PM, Joly RJ, Bressan RA (2002) Does proline accumulation play an active role in stress-induced growth reduction? Plant J 31:699–712

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiol Plantarum 15:473–497

    Article  CAS  Google Scholar 

  • Nagasawa A, Finer JJ (1989) Plant regeneration from embryogenic suspension culture of Chinese yam (Dioscorea opposita Thunb.). Plant Sci 60:263–271

    Article  CAS  Google Scholar 

  • Neill SJ, Desikan R, Clarke A, Hurst RD, Hancock JT (2002) Hydrogen peroxide and nitric oxide as signalling molecules in plants. J Exp Bot 53:1237–1247

    Article  CAS  PubMed  Google Scholar 

  • Nickel RS, Cunningham BA (1969) Improved peroxidase assay method using Ieuco 2, 3, 6-trichlcroindophenol and application to comparative measurements of peroxidase catalysis. Anal Biochem 27:292–299

    Article  CAS  PubMed  Google Scholar 

  • Otvos K, Pasternak TP, Miskolczi P, Domoki M, Dorjgotov D, Szucs A, Bottka S, Dudits D, Feher A (2005) Nitric oxide is required for, and promotes auxin-mediated activation of, cell division and embryogenic cell formation but does not influence cell cycle progression in alfafa cell cultures. Plant J 43:849–860

    Article  CAS  PubMed  Google Scholar 

  • Parani M, Rudrabhatla S, Myers R, Weirich H, Smith B, Leaman D, Goldman SL (2004) Microarray analysis of nitric oxide responsive transcripts in Arabidopsis. Plant Biotech J 2:359–366

    Article  CAS  Google Scholar 

  • Sun BT, Jing Y, Chen KM, Song LL, Chen FJ, Zhang LX (2007) Protective effect of nitric oxide on iron deficiency-induced oxidative stress in maize (Zea mays). J Plant Physiol 164:536–543

    Article  CAS  PubMed  Google Scholar 

  • Tewari RK, Kim SY, Hahn EJ, Paek KY (2008) Involvement of nitric oxide-induced NADPH oxidase in adventitious root growth and antioxidant defense in Panax ginseng. Plant Biotech Rep 2:113–122

    Article  Google Scholar 

  • Tun NN, Holk A, Scherer FE (2001) Rapid increase of NO release in plant cell cultures induced by cytokinin. FEBS Lett 509:174–176

    Article  CAS  PubMed  Google Scholar 

  • Tun NN, Livaja M, Kieber JJ, Scherer GFE (2008) Zeatin-induced nitric oxide (NO) biosynthesis in Arabidopsis thaliana mutants of NO biosynthesis and of two-component signaling genes. New Phytol 178:515–531

    Article  CAS  PubMed  Google Scholar 

  • Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant system in acid rain treated bean plants: protective role of exogenous polyammines. Plant Sci 151:59–66

    Article  CAS  Google Scholar 

  • Xu J, Yin HX, Li X (2009) Protective effects of proline against cadmium toxicity in micropropagated hyperaccumulator, Solanum nigrum L. Plant Cell Rep 28:325–333

    Article  CAS  PubMed  Google Scholar 

  • Zottini M, Formentin E, Scattolin M, Carimi F, Lo Schiavo F, Terzi M (2002) Nitric oxide affects plant mitochondrial functionality in vivo. FEBS Lett 515:75–78

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The research was supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant no. 0707013603).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jin Xu or Xiaojing Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, J., Yin, H., Wang, W. et al. Effects of sodium nitroprusside on callus induction and shoot regeneration in micropropagated Dioscorea opposita . Plant Growth Regul 59, 279–285 (2009). https://doi.org/10.1007/s10725-009-9410-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-009-9410-z

Keywords

Navigation