Skip to main content
Log in

Fatty acid composition and oil content of seeds from perilla (Perilla frutescens (L.) var. frutescens) germplasm of Republic of Korea

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Perilla (Perilla frutescens (L.) var. frutescens) is an oilseed crop that produces a large amount of α-linolenic acid (ALA, 18:3), an ω-3 fatty acid in seeds. Perilla is also a fragrant leafy herb with great health benefits. To develop value-added perilla crop, we surveyed the fatty acid composition and oil content of 87 germplasms accessions maintained at Republic of Korea. Our results show that ALA is the major fatty acid, ranging from 47 to 64%, followed by linoleic acid (LA, 18:2, an ω-6 fatty acid) from 10 to 24% and the oleic acid (OA, 18:1, an ω-9 fatty acid) from 9 to 20%. The seed oil content among accessions ranges from 17 to 42.7%. To access if the different fatty acid profile and oil content among germplasms are associated with changes in key genes, we compare the sequences encoding fatty acid desaturase 2 (FAD2) and fatty acid desaturase 3 (FAD3) responsible for LA and ALA synthesis, respectively. Besides, we examine the sequence of diacylglycerol acyltransferase 1 (DGAT1), a key enzyme in determining oil content. We do not find major changes in FAD2 or FAD3 associated with different fatty acid profiles. We discover a change in DGAT1 that might associate a low oil content in seeds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Asif M (2011) Health effects of omega-3,6,9 fatty acids: Perilla frutescens is a good example of plant oils. Orient Pharm Exp Med 11:51–59

    Article  PubMed  PubMed Central  Google Scholar 

  • Brenner DM (1993) Perilla: botany, uses and genetic resources. In: Janick J, Simon JE (eds) New crops. Wiley, New York, pp 322–328

    Google Scholar 

  • Deng Y-m, Xie Q-m, Zhang S-j, Yao H-y, Zhang H (2007) Anti-asthmatic effects of perilla seed oil in the guinea pig in vitro and in vivo. Planta Med 73:53–58

    Article  CAS  PubMed  Google Scholar 

  • Deng KP, Fan YX, Ma TW, Wang Z, TanTai WJ, Nie HT, Guo YX, Yu XQ, Sun LW, Wang F (2018) Carcass traits, meat quality, antioxidant status and antioxidant gene expression in muscle and liver of Hu lambs fed perilla seed. J Anim Physiol Anim Nutr 102:e828–e837

    Article  CAS  Google Scholar 

  • Dyer JM, Stymne S, Green AG, Carlsson AS (2008) High-value oils from plants. Plant J 54:640–655

    Article  CAS  PubMed  Google Scholar 

  • Eckert GP, Franke C, Nöldner M, Rau O, Wurglics M, Schubert-Zsilavecz M, Müller WE (2010) Plant derived omega-3-fatty acids protect mitochondrial function in the brain. Pharmacol Res 61:234–241

    Article  CAS  PubMed  Google Scholar 

  • Graef G, LaVallee BJ, Tenopir P, Tat M, Schweiger B, Kinney AJ, Van Gerpen JH, Clemente TE (2009) A high-oleic-acid and low-palmitic-acid soybean: agronomic performance and evaluation as a feedstock for biodiesel. Plant Biotechnol J 7:411–421

    Article  CAS  PubMed  Google Scholar 

  • Honda G, Yuba A, Kojima T, Tabata M (1994) Chemotaxonomic and cytogenetic studies on Perilla frutescens var. citriodora (‘Lemon Egoma’). Nat Med 48:185–190

    CAS  Google Scholar 

  • Ito M, Honda G (1996) A taxonomic study of Japanese wild Perilla (Labiatae). J Phytogeogr Taxon 44:43–52

    Google Scholar 

  • Ito M, Kato H, Oka Y, Honda G (1998) Phylogenetic analysis of Japanese Perilla species by using DNA polymorphisms. Nat Med 52:248–252

    CAS  Google Scholar 

  • Jako C, Kumar A, Wei Y, Zou J, Barton DL, Giblin EM, Covello PS, Taylor DC (2001) Seed-specific over-expression of an Arabidopsis cDNA encoding a diacylglycerol acyltransferase enhances seed oil content and seed weight. Plant Physiol 126:861–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • James MJ, Gibson RA, Cleland LG (2000) Dietary polyunsaturated fatty acids and inflammatory mediator production. Am J Clin Nutr 71:343s–348s

    Article  CAS  PubMed  Google Scholar 

  • Jiang C, Shi J, Li R, Long Y, Wang H, Li D, Zhao J, Meng J (2014) Quantitative trait loci that control the oil content variation of rapeseed (Brassica napus L.). Theor Appl Genet 127:957–968

    Article  CAS  PubMed  Google Scholar 

  • Katavic V, Reed DW, Taylor DC, Giblin EM, Barton DL, Zou J, MacKenzie SL, Covello PS, Kunst L (1995) Alteration of seed fatty acid composition by an ethyl methanesulfonate-induced mutation in Arabidopsis thaliana affecting diacylglycerol acyltransferase activity. Plant Physiol 108:399–409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim HU, Lee K-R, Shim D, Lee JH, Chen GQ, Hwang S (2016) Transcriptome analysis and identification of genes associated with ω-3 fatty acid biosynthesis in Perilla frutescens (L.) var. frutescens. BMC Genom 17:474

    Article  CAS  Google Scholar 

  • Lee H-C, Ko H-K, Huang BETG, Chu Y-H, Huang S-Y (2014) Antidepressant-like effects of Perilla frutescens seed oil during a forced swimming test. Food Funct 5:990–996

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Rodriguez JP, Kim YJ, Lee MH, Cho EJ, Lee S (2016a) Fatty acid content in Perilla cultivars and commercial oils determined by GC analysis. Nat Prod Sci 22:259–262

    Article  CAS  Google Scholar 

  • Lee K-R, Lee Y, Kim E-H, Lee S-B, Roh KH, Kim J-B, Kang H-C, Kim HU (2016b) Functional identification of oleate 12-desaturase and ω-3 fatty acid desaturase genes from Perilla frutescens var. frutescens. Plant Cell Rep 35:2523–2537

    Article  CAS  PubMed  Google Scholar 

  • Li C, Miao H, Wei L, Zhang T, Han X, Zhang H (2014) Association mapping of seed oil and protein content in Sesamum indicum L. using SSR markers. PLoS ONE 9:e105757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liao B, Hao Y, Lu J, Bai H, Guan L, Zhang T (2018) Transcriptomic analysis of Perilla frutescens seed to insight into the biosynthesis and metabolic of unsaturated fatty acids. BMC Genom 19:213

    Article  CAS  Google Scholar 

  • Lung S-C, Weselake RJ (2006) Diacylglycerol acyltransferase: a key mediator of plant triacylglycerol synthesis. Lipids 41:1073–1088

    Article  CAS  PubMed  Google Scholar 

  • Müller-Waldeck F, Sitzmann J, Schnitzler WH, Graßmann J (2010) Determination of toxic perilla ketone, secondary plant metabolites and antioxidative capacity in five Perilla frutescens L. varieties. Food Chem Toxicol 48:264–270

    Article  CAS  PubMed  Google Scholar 

  • Nitta M, Lee JK, Ohnishi O (2003) Asian Perilla crops and their weedy forms: their cultivation, utilization and genetic relationships. Econ Bot 57:245–253

    Article  Google Scholar 

  • Nitta M, Lee JK, Kang CW, Katsuta M, Yasumoto S, Liu D, Nagamine T, Ohnishi O (2005) The distribution of Perilla species. Genet Resour Crop Evol 52:797–804

    Article  Google Scholar 

  • Okuley J, Lightner J, Feldmann K, Yadav N, Lark E, Browse J (1994) Arabidopsis FAD2 gene encodes the enzyme that is essential for polyunsaturated lipid synthesis. Plant Cell 6:147–158

    CAS  PubMed  PubMed Central  Google Scholar 

  • Okuno M, Kajiwara K, Imai S, Kobayashi T, Honma N, Maki T, Suruga K, Goda T, Takase S, Muto Y, Moriwaki H (1997) Perilla oil prevents the excessive growth of visceral adipose tissue in rats by down-regulating adipocyte differentiation. J Nutr 127:1752–1757

    Article  CAS  PubMed  Google Scholar 

  • Routaboul J-M, Benning C, Bechtold N, Caboche M, Lepiniec L (1999) The TAG1 locus of Arabidopsis encodes for a diacylglycerol acyltransferase. Plant Physiol Biochem 37:831–840

    Article  CAS  PubMed  Google Scholar 

  • Sakurai K, Asahi K, Kanesaki Y, Hayashi Y, Asai J, Yuza T, Watanabe K, Katoh T, Watanabe T (2011) Dietary Perilla seed oil supplement increases plasma omega-3 polyunsaturated fatty acids and ameliorates immunoglobulin A nephropathy in high immunoglobulin A strain of ddY mice. Nephron Exp Nephrol 119:e33–e39

    Article  CAS  PubMed  Google Scholar 

  • Shin H-S, Kim S-W (1994) Lipid composition of perilla seed. J Am Oil Chem Soc 71:619–622

    Article  CAS  Google Scholar 

  • Simopoulos AP (1991) Omega-3 fatty acids in health and disease and in growth and development. Am J Clin Nutr 54:438–463

    Article  CAS  PubMed  Google Scholar 

  • Smith MA, Moon H, Chowrira G, Kunst L (2003) Heterologous expression of a fatty acid hydroxylase gene in developing seeds of Arabidopsis thaliana. Planta 217:507–516

    Article  CAS  PubMed  Google Scholar 

  • Warner K, Knowlton S (1997) Frying quality and oxidative stability of high-oleic corn oils. J Am Oil Chem Soc 74:1317–1322

    Article  CAS  Google Scholar 

  • Wijendran V, Hayes KC (2004) Dietary n-6 and n-3 fatty acid balance and cardiovascular health. Ann Rev Nutr 24:597–615

    Article  CAS  Google Scholar 

  • Yamazaki M, Shibata M, Nishiyama Y, Springob K, Kitayama M, Shimada N, Aoki T, Ayabe S, Saito K (2008) Differential gene expression profiles of red and green forms of Perilla frutescens leading to comprehensive identification of anthocyanin biosynthetic genes. FEBS J 275:3494–3502

    Article  CAS  PubMed  Google Scholar 

  • Zhang T, Song C, Song L, Shang Z, Yang S, Zhang D, Sun W, Shen Q, Zhao D (2017) RNA sequencing and coexpression analysis reveal key genes involved in α-linolenic acid biosynthesis in Perilla frutescens seed. Int J Mol Sci 18:2433

    Article  CAS  PubMed Central  Google Scholar 

  • Zheng P, Allen WB, Roesler K, Williams ME, Zhang S, Li J, Glassman K, Ranch J, Nubel D, Solawetz W, Bhattramakki D, Llaca V, Deschamps S, Zhong GY, Tarczynski MC, Shen B (2008) A phenylalanine in DGAT is a key determinant of oil content and composition in maize. Nat Genet 40:367–372

    Article  CAS  PubMed  Google Scholar 

  • Zou J, Wei Y, Jako C, Kumar A, Selvaraj G, Taylor DC (1999) The Arabidopsis thaliana TAG1 mutant has a mutation in a diacylglycerol acyltransferase gene. Plant J 19:645–653

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was conducted with the support of the Research Program for Agricultural Science & Technology Development (Project No. PJ01257102), the National Institute of Agricultural Science, and the Next-Generation BioGreen 21 Program (SSAC, Grant No. PJ013185), Rural Development Administration, Republic of Korea, The Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry, and Fisheries (IPET) (116079-03 and 316087-4), Republic of Korea, and the MidCareer Researcher Program of the National Research Foundation of Korea (NRF-2017R1A2B4007096). This study was supported in part by the U.S. Department of Agriculture Current Research Information System Project 2030-21410-020-00D (to Grace Q. Chen). USDA is an equal opportunity provider and employer. Mention of a specific product name by the U.S. Department of Agriculture does not constitute an endorsement and does not imply a recommendation over other suitable products.

Author information

Authors and Affiliations

Authors

Contributions

HUK, KRL, IJ, HEJ, JBH, and TYK performed the experiments; HUK, KRL, and GQC analyzed the data; and HUK, KRL, and GQC wrote the paper. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hyun Uk Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 3321 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H.U., Lee, KR., Jeon, I. et al. Fatty acid composition and oil content of seeds from perilla (Perilla frutescens (L.) var. frutescens) germplasm of Republic of Korea. Genet Resour Crop Evol 66, 1615–1624 (2019). https://doi.org/10.1007/s10722-019-00803-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-019-00803-8

Keywords

Navigation