Skip to main content

Advertisement

Log in

Assessment of the oil content of the seed produced by Salicornia L., along with its ability to produce forage in saline soils

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Soil salinity presents a serious threat to crop production. The relatively poor tolerance to this stress agent exhibited by conventional crops incentivizes the search for alternative producers of food and forage in salinity-affected environments. Halophytes belonging to the genus Salicornia L. have been suggested as being able to provide both forage and edible seed oil. Here, a set of 14 Salicornia europaea L. accessions was investigated for their ability to produce seed oil and forage in response to a range of salt concentrations (100, 300 and 600 mM NaCl) in the water used for irrigation. Seed of the accessions was collected from diverse sites close to saline rivers and the sea in Iran. Salinity was shown to have a major effect on biomass yield, and on seed oil yield and composition. The ratio of unsaturated to saturated fatty acids in the seed oil was remarkably high. Forage yield was highest when irrigated with 300 mM NaCl for most of the accessions, while a level of 600 mM NaCl suited the production of seed oil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allakhverdiev S, Kinoshita M, Inaba M et al (2001) Unsaturated fatty acids in membrane lipids protect the photosynthetic machinery against salt-induced damage insynechococcus. Plant Physiol 125:1842–1853

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Anwar F, Bhanger MI, Nasir MKA, Ismail S (2002) Analytical characterization of Salicornia bigelovii seed oil cultivated in Pakistan. Agric Food Chem 50:4210–4214. https://doi.org/10.1021/JF0114132

    Article  CAS  Google Scholar 

  • Ashour NI, Serag MS, El-Haleem AA, Mekki BB (1997) Forage production from three grass species under saline irrigation in Egypt. J Arid Environ 37:299–307

    Article  Google Scholar 

  • AOAC (1997) Official method of analysis (16th ed.). AOAC International, Arlington, VA., USA.

  • Atasoglu C, Sahin S, Canbolat O, Baytekin H (2010) The effect of harvest stage on the potential nutritive value of kermes oak (Quercus coccifera) leaves. Livest Res Rural Dev 22(2):182–185

    Google Scholar 

  • Esfahan EZ, Assareh MH, Jafari M, Jafari AA, Javadi SA, Karimi G (2010) Phenological effects on forage quality of two halophyte species Atriplex leucoclada and Suaeda vermiculata in four saline rangelands of Iran. J Food Agri Environ 8(3/4 part 2):999–1003

    CAS  Google Scholar 

  • Flagella Z, Giuliani MM, Rotunno T, Di Caterina R, De Caro A (2004) Effect of saline water on oil yield and quality of a high oleic sunflower (Helianthus annuus L.) hybrid. Eur J Agron 21:267–272

    Article  Google Scholar 

  • Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes*. New Phytol 179:945–963. https://doi.org/10.1111/j.1469-8137.2008.02531.x

    Article  PubMed  CAS  Google Scholar 

  • Flowers TJ, Hajibagheri MA, Clipson NJW (1986) Halophytes. Q Rev Biol 61:313–337. https://doi.org/10.1086/415032

    Article  Google Scholar 

  • Glenn EP, O’Leary W (1984) Relationship between salt accumulation and water content of dicotyledonous halophytes. Plant Cell Environ 7:253–261. https://doi.org/10.1111/1365-3040.ep11589448

    Article  CAS  Google Scholar 

  • Glenn EP, Brown JJ, O’Leary JW (1998) Irrigating crops with seawater. Sci Am 279:76–81

    Article  CAS  Google Scholar 

  • Hajlaoui H, Denden M, El Ayeb N (2009) Changes in fatty acids composition, hydrogen peroxide generation and lipid peroxidation of salt-stressed corn (Zea mays L.) roots. Acta Physiol Plant 31:787–796. https://doi.org/10.1007/s11738-009-0293-4

    Article  CAS  Google Scholar 

  • Hedge CI (1997) Chenopodiaceae (Salicornia). In: Rechinger KH (ed) Graz, Akad Druck- und Verlagsanstalt, vol 172. Flora Iranica, pp 130–131

  • Hunt R, Causton DR, Shipley B, Askew AP (2002) A modern tool for classical plant growth analysis. Ann Bot 90:485–488. https://doi.org/10.1093/aob/mcf214

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kadereit G, Ball P, Beer S et al (2007) A taxonomic nightmare comes true: phylogeny and biogeography of glassworts (Salicornia L., Chenopodiaceae). Taxon 28:1143–1170

    Article  Google Scholar 

  • Katschnig D, Broekman R, Rozema J (2013) Salt tolerance in the halophyte Salicornia dolichostachya moss: growth, morphology and physiology. Environ Exp Bot 92:32–42

    Article  CAS  Google Scholar 

  • Kumar A, Kumar A, Lata C et al (2016) Eco-physiological responses of Aeluropus lagopoides (grass halophyte) and Suaeda nudiflora (non-grass halophyte) under individual and. S Afr J Bot 105:36–44

    Article  Google Scholar 

  • Liu X, Xia Y, Wang F et al (2005) Analysis of fatty acid compositions of Salicornia europaea L. seed oil. Food Sci 2:042

    Google Scholar 

  • Lu Z, Hodges RM, Mota-Urbina CJ et al (2001) Salicornia bigelovii (Chenopodiaceae)—a seawater irrigated crop with versatile commercial products. In: The 5th New Crops Symposium, Atlanta, Georgia

  • Magdy M, Mansour F, Hasselt PR, Kuiper PJ (1994) Plasma membrane lipid alterations induced by NaCl in winter wheat roots. Physiologia Plant 92(3):473–478

    Article  Google Scholar 

  • Masters DG, Norman HC, Dynes RA (2001) Opportunities and limitations for animal production from saline land. Asian Aust J Anim Sci 14:199–211

    Google Scholar 

  • Norman HC, Freind C, Masters DG et al (2004) Variation within and between two saltbush species in plant composition and subsequent selection by sheep. Aust J Agric Res 55:999. https://doi.org/10.1071/AR04031

    Article  Google Scholar 

  • Norman HC, Masters DG, Barrett-Lennard EG (2013) Halophytes as forages in saline landscapes: interactions between plant genotype and environment change their feeding value to ruminants. Environ Exp Bot 92:96–109

    Article  Google Scholar 

  • Oktay G, Temel S (2015) Gaziosmanpaşa Üniversitesi Ziraat Fakültesi dergisi. Gaziosmanpaşa Üniversitesi Matbaası

  • Panta S, Flowers T, Lane P et al (2014) Halophyte agriculture: success stories. Environ Exp Bot 107:71–83

    Article  Google Scholar 

  • Parida AK, Kumari A, Panda A et al (2017) Photosynthetic pigments, betalains, proteins, sugars, and minerals during Salicornia brachiata senescence. Biol Plant. https://doi.org/10.1007/s10535-017-0764-1

    Article  Google Scholar 

  • Singh D, Buhmann AK, Flowers TJ et al (2014) Salicornia as a crop plant in temperate regions: selection of genetically characterized ecotypes and optimization of their cultivation conditions. AoB Plants 6:plu071. https://doi.org/10.1093/aobpla/plu071

    Article  PubMed  PubMed Central  Google Scholar 

  • Smaoui A, Chérif A (2000) Changes in molecular species of triacylglycerols in developing cotton seeds under salt stress. Biochem Soc Trans 28:902–905. https://doi.org/10.1042/BST0280902

    Article  PubMed  CAS  Google Scholar 

  • Swingle RS, Glenn EP, Squires V (1996) Growth performance of lambs fed mixed diets containing halophyte ingredients. Anim Feed Sci Technol 63:1–4

    Article  Google Scholar 

  • Temel S, Surmen M, Tan M (2015) Effects of growth stages on the nutritive value of specific halophyte species in saline grasslands. J Anim Plant Sci 25:1419–1428

    CAS  Google Scholar 

  • Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91:503–527. https://doi.org/10.1093/aob/mcg058

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Upchurch RG (2008) Fatty acid unsaturation, mobilization, and regulation in the response of plants to stress. Biotechnol Lett 30:967–977. https://doi.org/10.1007/s10529-008-9639-z

    Article  PubMed  CAS  Google Scholar 

  • Urbano M, Tomaselli V, Bisignano V et al (2017) Salicornia patula Duval–Jouve: from gathering of wild plants to some attempts of cultivation in Apulia region (southern Italy). Genet Resour Crop Evol 64:1465–1472. https://doi.org/10.1007/s10722-017-0521-5

    Article  Google Scholar 

  • Van Soest PJ (1982) Nutritional ecology of the ruminant metabolisme, nutritional strategies, the cellulolitic fermentation and the chemistry of forage and plant fibers. O&B Book, Oregon

    Google Scholar 

  • Ventura Y, Wuddineh WA, Myrzabayeva M, Alikulov Z, Khozin-Goldberg I, Shpigel M, Samocha TM, Sagi M (2011) Effect of seawater concentration on the productivity and nutritional value of annual Salicornia and perennial Sarcocornia halophytes as leafy. Sci Hortic (Amsterdam) 128:189–196

    Article  CAS  Google Scholar 

  • Yeilaghi H, Arzani A, Ghaderian M et al (2012) Effect of salinity on seed oil content and fatty acid composition of safflower (Carthamus tinctorius L.) genotypes. Food Chem 130:618–625

    Article  CAS  Google Scholar 

  • Yensen NP (2008) Halophyte uses for the twenty-first century. In: Ecophysiology of high salinity tolerant plants. Springer, Dordrecht, pp 367–396

  • Zhang M, Barg R, Yin M et al (2005) Modulated fatty acid desaturation via overexpression of two distinct ω-3 desaturases differentially alters tolerance to various abiotic stresses in transgenic tobacco cells and plants. Plant J 44:361–371. https://doi.org/10.1111/j.1365-313X.2005.02536.x

    Article  PubMed  CAS  Google Scholar 

  • Zhu J-K, Seki M, Satou M et al (2000) Genetic analysis of plant salt tolerance using Arabidopsis. Plant Physiol 124:941–948. https://doi.org/10.1104/pp.124.3.941

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nayer Azam Khoshkholgh Sima.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights

This article does not contain any studies with human or animal subjects.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reiahisamani, N., Esmaeili, M., Khoshkholgh Sima, N.A. et al. Assessment of the oil content of the seed produced by Salicornia L., along with its ability to produce forage in saline soils. Genet Resour Crop Evol 65, 1879–1891 (2018). https://doi.org/10.1007/s10722-018-0661-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-018-0661-2

Keywords

Navigation