Skip to main content
Log in

Phylogenetic implications of the internal transcribed spacers of nrDNA and chloroplast DNA fragments of Musa in deciphering the ambiguities related to the sectional classification of the genus

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

The genus Musa L. comprises of economically important bananas and has been divided into five sections based on their chromosome number and morphological characteristics viz., Australimusa, Callimusa, Eumusa, Rhodochlamys and Ingentimusa. However, this sectional classification has long been disputed. In this study, we present data on sequenced multiple DNA fragments from the maternally inherited chloroplast genome (atpB-rbcL spacer, trnK-matK intron and psbK-psbI spacer) and the biparentally inherited internal transcribed spacers of nuclear ribosomal DNA of three species of Musa along with data available in GenBank database to understand their implications on the sectional relationship and phylogeny of the genus Musa. In our findings, none of the five sections of Musa previously defined based on morphology was recovered in the molecular phylogeny analysis using cpDNA and nrDNA. Instead, the results corroborate with the suggestion that sectional classification in the genus Musa should be reviewed by combining together the section Eumusa and Rhodochlamys as one and section Australimusa and Callimusa as a single different section, along with that of Ingentimusa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Andreasen K, Bremer B (2000) Combined phylogenetic analysis in the Rubiaceae–Ixoroideae: morphology, nuclear and chloroplast DNA data. Am J Bot 87:1731–1748

    Article  CAS  PubMed  Google Scholar 

  • Argent GCG (1976) The wild bananas of Papua New Guinea. Notes on Royal Botanic Garden, vol 35. Edinburgh, pp 77–114

  • Baker JG (1893) A synopsis of the genera and species of Museae. Ann Bot 7:189–229

    Article  Google Scholar 

  • Baldwin BG (1992) Phylogenetic utility of the internal transcribed spacers of nuclear ribosomal DNA in plants: an example from the Compositae. Mol Phylogenet Evol 1:3–16

    Article  CAS  PubMed  Google Scholar 

  • Baldwin BG, Sanderson MJ, Porter JM, Wojciechowski MF, Campbell CS, Donoghue MJ (1995) The ITS region of nuclear ribosomal DNA-A valuable source of evidence on Angiosperm phylogeny. Ann Mo Bot Gard 82:247–277

    Article  Google Scholar 

  • Bartos J, Alkhimova O, Dolezelova M, De Langhe E, Dolezel J (2005) Nuclear genome size and genomic distribution of ribosomal DNA in Musa and Ensete (Musaceae): taxonomic implications. Cytogenet Genome Res 109:50–57

    Article  CAS  PubMed  Google Scholar 

  • Bekele E, Shigeta M (2011) Phylogenetic relationships between Ensete and Musa species as revealed by the trnT trnF region of cpDNA. Genet Resour Crop Evol 58:259–269

    Article  CAS  Google Scholar 

  • Bhat KV, Bhat SR, Chandel KPS (1992) Survey of isozyme polymorphism for clonal identification in Musa I esterase, acid phosphatase and catalase. J Hortic Sci 67:501–507

    Article  CAS  Google Scholar 

  • Chase MW, Soltis DE, Olmstead RG, Morgan D, Les DH, Mishler BD et al (1993) Phylogenetics of seed plants: an analysis of nucleotide sequences from the plastid gene rbcL. Ann Mo Bot Gard 80:528–580

    Article  Google Scholar 

  • Cheesman EE (1947) Classification of the bananas II. The genus Musa L. Kew Bull 2:106–117

    Article  Google Scholar 

  • Cheesman EE (1948a) Classification of the bananas III. Critical notes on species. Kew Bull 3(11–28):145–157

    Article  Google Scholar 

  • Cheesman EE (1948b) Classification of the bananas III. Critical notes on species. Kew Bull 3:323–328

    Article  Google Scholar 

  • Cheesman EE (1949a) Classification of the bananas III. Critical notes on species. Kew Bull 4:23–28, 133–137, 265–272

  • Cheesman EE (1949b) Classification of the bananas III.Critical notes on species. Kew Bull 4:445–452

    Article  Google Scholar 

  • Cheesman EE (1950) Classification of the bananas III. Critical notes on species. Kew Bull 5(27–31):151–155

    Article  Google Scholar 

  • Christelová P, Valárik M, Hřibová E, De Langhe E, Doležel J (2011) A multi gene sequence-based phylogeny of the Musaceae (banana) family. BMC Evol Biol 11:103. doi:10.1186/1471-2148-11-103

    Article  PubMed  PubMed Central  Google Scholar 

  • Čížková J, Hřibová E, Christelová P, Van den Houwe I, Häkkinen M, Roux N, Swennen R, Doležel J (2015) Molecular and cytogenetic characterization of wild Musa species. PLoS One 10(8):e0134096. doi:10.1371/journal.pone.0134096

    Article  PubMed  PubMed Central  Google Scholar 

  • Daniells JW, Jenny C, Karamura DA, Tomekpe K, Arnaud E, Sharrock S (2001) Musalogue: a catalogue of Musa germplasm diversity in the genus Musa. INIBAP, France

    Google Scholar 

  • De Langhe E (2000) Diversity in the genus Musa, its significance and its potential. Acta Hortic 540:81–86

    Article  Google Scholar 

  • de Queiroz A, Donoghue MJ, Kim J (1995) Separate versus combined analysis of phylogenetic evidence. Annu Rev Ecol Evol Syst 26:657–681

    Article  Google Scholar 

  • Gawel NJ, Jarret RL (1991a) A modified CTAB DNA extraction procedure for Musa and Ipomoea. Plant Mol Biol Rep 9:262–266

    Article  CAS  Google Scholar 

  • Gawel NJ, Jarret RL (1991b) Chloroplast DNA restriction fragment length polymorphisms (RFLP) in Musa species. Theor Appl Genet 81:783–786

    Article  CAS  PubMed  Google Scholar 

  • Gawel NJ, Jarret RL, Whittemore AP (1992) Restriction fragment length polymorphism (RFLP)-based phylogenetic analysis of Musa. Theor Appl Genet 84:286–290

    CAS  PubMed  Google Scholar 

  • Gielly L, Taberlet P (1994) The use of chloroplast DNA to resolve plant phylogenies: noncoding versus rbcL sequences. Mol Biol Evol 11:769–777

    CAS  PubMed  Google Scholar 

  • Godwin ID, Aitken EAB, Smith LW (1997) Application of inter simple sequence repeat (ISSR) markers to plant genetics. Electrophoresis 18:1524–1528

    Article  CAS  PubMed  Google Scholar 

  • Grapin A, Noyer JL, Carreel F, Dambler D, Baurens FC, Lanaud C, Lagoda PJL (1998) Diploid Musa acuminata genetic diversity assayed with sequence tagged microsatellite sites. Electrophoresis 19:1374–1380

    Article  CAS  PubMed  Google Scholar 

  • Häkkinen M (2013) Reappraisal of sectional taxonomy in Musa (Musaceae). Taxon 62:809–813

    Article  Google Scholar 

  • Hoot SB, Culham A, Crane PR (1995) The utility of atpB gene sequences in resolving phylogenetic relationships: comparison with rbcL and 18S ribosomal DNA sequences in the Lardizabalaceae. Ann Mo Bot Gard 82:194–207

    Article  Google Scholar 

  • Howell EC, Newbury HJ, Swennen RL, Withers LA, Ford-Lloyd BV (1994) The use of RAPD for identifying and classifying Musa germplasm. Genome 37:328–332

    Article  CAS  PubMed  Google Scholar 

  • Hřibová E, Čížková J, Christelová P, Taudien S, de Langhe E, Doležel J (2011) The ITS1-5.8S-ITS2 sequence region in the Musaceae: structure, diversity and use in molecular phylogeny. PLoS One 6(3):e17863

    Article  PubMed  PubMed Central  Google Scholar 

  • Huelsenbeck JP, Bull JJ, Clifford WC (1996) Combining data in phylogenetic analysis. Trends Ecol Evol 11:152–158

    Article  CAS  PubMed  Google Scholar 

  • INIBAP/CIRAD (1996) Descriptors for Banana (Musa spp.). INIBAB, Montpellier

    Google Scholar 

  • Jarret RL, Gawel NJ (1995) Molecular markers, genetic diversity and systematic. In: Gowen S (ed) Bananas and plantains. Chapman and Hall, London, pp 67–83

    Google Scholar 

  • Johnson LA, Soltis DE (1994) MatK DNA sequences and phylogenetic reconstruction in Saxifragaceae s. str. Syst Bot 19:143–156

    Article  Google Scholar 

  • Jussieu AL (1789) Ordo I. Musae Genera plantarum: secundum ordines naturals disposita, juxta methodum in Horto regio parisiensi exaratam, anno MDCCLXXIV, Paris, pp 61–62

  • Källersjö M, Farris JS, Chase MW, Bremer B, Fay MF, Humphries CJ et al (1998) Simultaneous parsimony jackknife analysis of 2538 rbcL DNA sequences reveals support for major clades of green plants, land plants, seed plants, and flowering plants. Plant Sys Evol 213:259–287

    Article  Google Scholar 

  • Karamura DA (1999) Numerical taxonomic studies of the East African Highland bananas (Musa AAA-East Africa) in Uganda. PhD thesis from the University of Reading published by INIBAP, Montpellier, France

  • Kim KJ, Lee HL (2004) Complete chloroplast genome sequences from Korean ginseng (Panax schinseng Nees) and comparative analysis of sequence evolution among 17 vascular plants. DNA Res 11:247–261

    Article  CAS  PubMed  Google Scholar 

  • Kress WJ, Specht CD (2005) Between cancer and capricorn: phylogeny, evolution, and ecology of the tropical Zingiberales. In: Friis I, Balslev H (eds) Plant diversity and complexity patterns—local, regional and global dimensions, vol 55., Biologiske SkrifterThe Royal Danish Academy of Sciences and Letters, Copenhagen, pp 459–478

    Google Scholar 

  • Kress WJ, Prince LM, Hahn WJ, Zimmer EA (2001) Unraveling the evolutionary radiation of the families of the Zingiberales using morphological and molecular evidence. Syst Biol 50:926–944

    Article  CAS  PubMed  Google Scholar 

  • Lahaye R, van der Bank M, Bogarin D, Warner J, Pupulin F, Gigot G et al (2008) DNA barcoding the floras of biodiversity hotspots. Proc Natl Acad Sci USA 105:2923–2928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lanaud C, Tezenas du Montcel H, Jolivot MP, Glaszmann JC, Gonzalez de Leon D (1992) Variation in ribosomal gene spacer length among wild and cultivated bananas. Heredity 68:148–156

    Article  Google Scholar 

  • Li LF, Hakkinen M, Yuan YM, Hao G, Ge XJ (2010) Molecular phylogeny and systematics of the banana family (Musaceae) inferred from multiple nuclear and chloroplast DNA fragments, with a special reference to the genus Musa. Mol Phylogenet Evol 57:1–10

    Article  PubMed  Google Scholar 

  • Linnaeus C (1753) Musa L. species plantarum, vol 2. Impensis Laurentii Salvii, Stockholm, p 1043

    Google Scholar 

  • Liu AZ, Kress J, Li DZ (2010) Phylogenetic analyses of the banana family (Musaceae) based on nuclear ribosomal (ITS) and chloroplast (trnL-F) evidence. Taxon 59:20–28

    Google Scholar 

  • Nixon KC, Carpenter JM (1997) On simultaneous analysis. Cladistics 12:221–241

    Article  Google Scholar 

  • Nwakanma DC, Pillay M, Okoli BE, Tenkouano A (2003) Sectional relationships in the genus Musa L. inferred from the PCR-RFLP of organelle DNA sequences. Theor Appl Genet 107:850–856

    Article  CAS  PubMed  Google Scholar 

  • Osuji JO, Crouch J, Harrison G, Heslop-Harrison JS (1997) Identification of the genomic constitution of Musa L lines (bananas, plantains and hybrids) using molecular cytogenetics. Ann Bot 80:787–793

    Article  CAS  Google Scholar 

  • Purseglove JW (1972) Tropical crops. Monocotyledons, vol 2. Longmans, London

    Google Scholar 

  • Qiu YL, Lee JH, Bernasconi-Quadroni F, Soltis DE, Soltis PS, Zanis M, Zimmer EA, Al ET (1999) The earliest angiosperms: evidence from mitochondrial, plastid and nuclear genomes. Nature 402:404–407

    Article  CAS  PubMed  Google Scholar 

  • Rieseberg LH, Wendel JF (1993) Introgression and its consequences in plants. In: Harrison R (ed) Hybrid zones and the evolutionary process. Oxford University Press, Oxford, pp 70–109

    Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  CAS  PubMed  Google Scholar 

  • Sagot P (1887) Sur le genre bananier. B Soc Bot Fr 34:328–330

    Article  Google Scholar 

  • Shepherd K (1990) Observations on Musa taxonomy. In: Jarret RL (ed) Identification of genetic diversity in the genus Musa: Proceedings of an international workshop held at Los Banos, Philippines, 5–10 September 1988 INIBAP, Montpellier, pp 158–165

  • Shepherd K (1999) Cytogenetics of the genus Musa. International network for the improvement of banana and plantain, Montpellier

    Google Scholar 

  • Simmonds NW (1954) Isolation in Musa, sections Eumusa and Rhodochlamys. Evolution 8:65–74

    Article  Google Scholar 

  • Simmonds NW (1962) The evolution of the bananas. Longmans, London

    Google Scholar 

  • Simmonds NW, Weatherup STC (1990) Numerical taxonomy of the wild bananas (Musa). New Phytol 115:567–571

    Article  Google Scholar 

  • Small RL, Lickey EB, Shaw J, Hauk WD (2005) Amplification of noncoding chloroplast DNA for phylogenetic studies in lycophytes and monilophytes with a comparative example of relative phylogenetic utility from Ophioglossaceae. Mol Phylogenet Evol 36:509–522

    Article  CAS  PubMed  Google Scholar 

  • Soltis DE, Soltis PS (1998) Choosing an approach and an appropriate gene for phylogenetic analysis. In: Soltis DE, Soltis PS, Doyle JJ (eds) Molecular systematics of plants II-DNA Sequencing. Kluwer Academic Publishers, Boston, pp 1–42

    Chapter  Google Scholar 

  • Soltis PS, Soltis DE, Chase MW (1999) Angiosperm phylogeny inferred from multiple genes as a tool for comparative biology. Nature 402:402–404

    Article  CAS  PubMed  Google Scholar 

  • Stover RH, Simmonds NW (1987) Bananas. Longman Scientific and Technical, Essex

    Google Scholar 

  • Taberlet P, Gielly L, Pautou G, Bouvet J (1991) Universal primers for the amplification of three non-coding regions of chloroplast DNA. Plant Mol Biol 17:1105–1109

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson J, Higgins D, Gibson T (1994) ClustalW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsumura Y, Kawahara T, Wickneswari R, Yoshimura K (1996) Molecular phylogeny of Dipterocarpaceae in Southeast Asia using RFLP and PCR-amplified chloroplast genes. Theor Appl Genet 93:22–29

    Article  CAS  PubMed  Google Scholar 

  • Ude G, Pillay M, Nwakanma D, Tenkouano A (2002) Analysing of genetic diversity and sectional relationships in Musa using AFLP markers. Theor Appl Genet 104:1239–1245

    Article  CAS  PubMed  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, New York, pp 315–322

    Google Scholar 

  • Wong C, Kiew R, Argent G, Set O, Lee SK, Gan YY (2002) Assessment of the validity of the sections in Musa (Musaceae) using AFLP. Ann Bot 90:231–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong C, Argent GCG, Kiew R, Set O, Gan YY (2003) The genetic relations of Musa species from Mount Jaya, New Guinea, and reappraisal of the sections of Musa (Musaceae). Gard Bull Singapore 55:97–111

    Google Scholar 

  • Xu F, Sun M (2001) Comparative analysis of phylogenetic relationships of grain amaranths and their wild relatives (Amaranthus; Amaranthaceae) using internal transcribed spacer, amplified fragment length polymorphism, and double-primer fluorescent intersimple sequence repeat markers. Mol Phylogenet Evol 21:372–387

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are thankful to the Head, Department of Biotechnology and Bioinformatics, North-Eastern Hill University for providing necessary facilities to carry out this research work. Immense appreciation are also accorded to Dr. Jeremy Dkhar, DST-INSPIRE faculty, Jawaharlal Nehru University, New Delhi and all the Plant Biotechnology Laboratory members, North-Eastern Hill University for all the assistance and motivation rendered.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satyawada Rama Rao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lamare, A., Otaghvari, A.M. & Rao, S.R. Phylogenetic implications of the internal transcribed spacers of nrDNA and chloroplast DNA fragments of Musa in deciphering the ambiguities related to the sectional classification of the genus. Genet Resour Crop Evol 64, 1241–1251 (2017). https://doi.org/10.1007/s10722-016-0433-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-016-0433-9

Keywords

Navigation