Skip to main content
Log in

Genetic factors determining varietal differences in characters affecting yield between two rice (Oryza sativa L.) varieties, Koshihikari and IR64

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

The yield of Koshihikari, a Japanese premium rice variety, is relatively lower than that of modern high yielding varieties. IR64 carries several well-known genes such as GS3, an important gene for grain size, sd-1, a semi-dwarf gene, and NARROW LEAF1 (NAL1), a gene for small, narrow flag leaves. In this study, we used two sets of chromosome segment substitution lines (CSSLs), from Koshihikari and IR64, and attempted to evaluate the genetic factors that cause differences between parents by analyzing the function of chromosome regions affecting a trait (CRATs). For 28 traits, we identified 312 CRATs in the Koshihikari background and 275 in the IR64 background. In these, donor alleles had positive effects in 84 and 103 CRATs, respectively. Among these, the CRAT related to GS3 and those for grain number expanded the potential sink size in Koshihikari, although this did not affect final yield. The combination of CRATs that enhances source ability may increase grain yield. Although the sd-1 gene might improve resistance to lodging, the yield of CSSLs with sd-1 decreased by 28.7 %. These results suggest that the smaller biomass conferred by sd-1 might reduce canopy photosynthesis. In the Koshihikari background, the CRAT related to NAL1 and those located on chr. 6 increased SPAD value but had the opposite effect on leaf size. Two CRATs that were detected on chr. 6 and 7 increased leaf area without any effect on the SPAD value. The combination of these CRATs for area and SPAD value might improve source ability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CRAT:

Chromosome region affecting a trait

CSSL:

Chromosome segment substitution line

QTL:

Quantitative trait locus

SLA:

Specific leaf area

References

  • Champagne ET, Bett-Garber KL, Fitzgerald MA, Grimm CC, Lea J, Ohtsubo K, Jongdee S, Xie L, Bassinello PZ, Resurreccion A, Ahmad R, Habibi F, Reinke R (2010) Important sensory properties differentiating premium rice varieties. Rice 3:270–281

    Article  Google Scholar 

  • Cock JH, Yoshida S (1972) Accumulation of 14C-labelled carbohydrate before flowering and its subsequent redistribution and respiration in the rice plant. Proc Crop Sci Soc Jpn 41:226–234

    Article  CAS  Google Scholar 

  • Fan C, Xing Y, Mao H, Lu T, Han B, Xu C, Li X, Zhang Q (2006) GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet 112:1164–1171

    Article  PubMed  CAS  Google Scholar 

  • Fujita D, Santos RE, Ebron LA, Fukuta Y, Kobayashi N (2011) Characterization of quantitative trait locus for days to heading in near-isogenic lines with genetic background of indica-type rice variety IR64 (Oryza sativa). Plant Breed 130:526–532

    Article  CAS  Google Scholar 

  • Fujita D, Trijatmiko KR, Tagle AG, Sapasap MV, Koide Y, Sasaki K, Tsakirpaloglou N, Gannaban RB, Nishimura T, Yanagihara S, Fukuta Y, Koshiba T, Slamet-Loedin IH, Ishimaru T, Kobayashi N (2013) NAL1 allele from a rice landrace greatly increases yield in modern indica cultivars. Proc Natl Acad Sci USA 110:20431–20436

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hua JP, Xing YZ, Xu CG, Sun XL, Yu SB, Zhang Q (2002) Genetic dissection of an elite rice hybrid revealed that heterozygotes are not always advantageous for performance. Genetics 162:1885–1895

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ida R (2006) Relationship between chemical analyzed nitrogen content, CCN value and SPAD value in flag leaves of cv. Koshihikari for the ripening period. Jpn J Crop Sci 75:550–553

    Article  CAS  Google Scholar 

  • Ishimaru K, Hirotsu N, Madoka Y, Kashiwagi T (2007) Quantitative trait loci for sucrose, starch, and hexose accumulation before heading in rice. Plant Physiol Biochem 45:799–804

    Article  PubMed  CAS  Google Scholar 

  • Ishimaru K, Hirotsu N, Madoka Y, Murakami N, Hara N, Onodera H, Kashiwagi T, Ujiie K, Shimizu B, Onishi A, Miyagawa H, Katoh E (2013) Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nat Genet 45:707–711

  • Kashiwagi T, Madoka Y, Hirotsu N, Ishimaru K (2006) Locus prl5 improves lodging resistance of rice by delaying senescence and increasing carbohydrate reaccumulation. Plant Physiol Biochem 44:152–157

    Article  PubMed  CAS  Google Scholar 

  • Koga Y, Uchiyamada H, Samoto S, Ishizaka S, Uehara Y, Fujita Y, Okuno K, Nakagahra M, Yamada T, Maruyama K, Yagi T, Mori K, Miura K (1987) Breeding a new rice cultivar “Akichikara”. Bull Hokuriku Natl Agric Exp Stn 29:23–46

    Google Scholar 

  • Li Z, Pinson SRM, Stansel JW, Paterson AH (1998) Genetic dissection of the source-sink relationship affecting fecundity and yield in rice (Oryza sativa L.). Mol Breed 4:419–426

    Article  CAS  Google Scholar 

  • Li JX, Yu SB, Xu CG, Tan YF, Gao YJ, Li XH, Zhang Q (2000) Analyzing quantitative trait loci for yield using a vegetatively replicated F2 population from a cross between the parents of an elite rice hybrid. Theor Appl Genet 101:248–254

    Article  CAS  Google Scholar 

  • Madoka Y, Kashiwagi T, Hirotsu N, Ishimaru K (2008) Indian rice ‘Kasalath’ contains genes that improve traits of Japanese premium rice ‘Koshihikari’. Theor Appl Genet 116:603–612

    Article  PubMed  CAS  Google Scholar 

  • Mae T (1997) Physiological nitrogen efficiency in rice: nitrogen utilization, photosyntheis, and yield potential. Plant Soil 196:201–210

    Article  CAS  Google Scholar 

  • Miyamoto T, Ochiai K, Takeshita S, Matoh T (2012) Identification of quantitative trait loci associated with shoot sodium accumulation under low potassium conditions in rice plants. Soil Sci Plant Nutr 58:728–736

    Article  CAS  Google Scholar 

  • Morita S (2008) Prospect for developing measures to prevent high-temperature damage to rice grain ripening. Jpn J Crop Sci 77:1–12

    Article  Google Scholar 

  • Murai M, Endo Y (2006) A new rice cultivar ‘Hikarikko’: Genes for short culm and earliness were introduced into ‘Koshihikari’ by backcrossing. Breed Res 8:183–189

    Google Scholar 

  • Murchie EH, Chen Y, Hubbart S, Peng S, Horton P (1999) Interactions between senescence and leaf orientation determine in situ patterns of photosynthesis and photoinhibition in field-grown rice. Plant Physiol 119:553–563

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Nagata K, Fukuta Y, Shimizu H, Yagi T, Terao T (2002) Quantitative trait loci for sink size and ripening traits in rice (Oryza sativa L.). Breed Sci 52:259–273

    Article  CAS  Google Scholar 

  • Namai S, Toriyama K, Fukuta Y (2009) Genetic variations in dry matter production and physiological nitrogen use efficiency in rice (Oryza sativa L.) varieties. Breed Sci 59:269–276

    Article  CAS  Google Scholar 

  • Nonoue Y, Matsubara K, Ono N, Mizobuchi R, Shibaya T, Ogiso E, Hori K, Fukuoka S, Yano M (2010) Development of reciprocal chromosome segment substitution lines between a japonica cultivar Koshihikari and an indica cultivar IR64 in rice. Breed Sci 12(Suppl. 2):55

    Google Scholar 

  • Ogi Y, Kato H, Maruyama K, Kikuchi F (1993) The effects on the culm length and other agronomic characters caused by semidwarfing genes at the sd-1 locus in rice. Jpn J Breed 43:267–275

    Article  Google Scholar 

  • Ohsumi A, Hamasaki A, Nakagawa H, Yoshida H, Shiraiwa T, Horie T (2007) A model explaining genotypic and ontogenetic variation of leaf photosynthetic rate in rice (Oryza sativa) based on leaf nitrogen content and stomatal conductance. Ann Bot 99:265–273

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Oka H (1974) Analysis of genes controlling F1 sterility in rice and by the use of isogenic lines. Genetics 77:521–543

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ookawa T, Hobo T, Yano M, Murata K, Ando T, Miura H, Asano K, Ochiai Y, Ikeda M, Nishitani R, Ebitani T, Ozaki H, Angeles ER, Hirasawa T, Matsuoka M (2010) New approach for rice improvement using a pleiotropic QTL gene for lodging resistance and yield. Nat Commun 1:132

    Article  PubMed  PubMed Central  Google Scholar 

  • Peng S, Laza MRC, Garcia FV, Cassman KG (1995) Chlorophyll meter estimates leaf area-based nitrogen concentration of rice. Commun Soil Sci Plant Anal 26:927–935

  • Peng S, Laza RC, Khush GS, Sanico AL, Visperas RM, Garcia FV (1998) Transpiration efficiencies of indica and improved tropical japonica rice grown under irrigated conditions. Euphytica 103:103–108

    Article  Google Scholar 

  • Peng S, Laza RC, Visperas RM, Sanico AL, Cassman KG (2000) Grain yield of rice cultivars and lines developed in the Philippines since 1966. Crop Sci 40:307–314

    Article  Google Scholar 

  • Peng S, Khush GS, Virk P, Tang Q, Zou Y (2008) Progress in ideotype breeding to increase rice yield potential. Field Crops Res 108:32–38

    Article  Google Scholar 

  • Sawada H, Kohno Y (2009) Differential ozone sensitivity of rice cultivars as indicated by visible injury and grain yield. Plant Biol 11:70–75

    Article  PubMed  CAS  Google Scholar 

  • Sheehy JE, Dionora MJA, Mitchell PL (2001) Spikelet numbers, sink size and potential yield in rice. Field Crops Res 71:77–85

    Article  Google Scholar 

  • Takai T, Kondo M, Yano M, Yamamoto T (2010) A quantitative trait locus for chlorophyll content and its association with leaf photosynthesis in rice. Rice 3:172–180

    Article  Google Scholar 

  • Takai T, Adachi S, Taguchi-Shiobara F, Sanoh-Arai Y, Iwasawa N, Yoshinaga S, Hirose S, Taniguchi Y, Yamanouchi U, Wu J, Matsumoto T, Sugimoto K, Kondo K, Ikka T, Ando T, Kono I, Ito S, Shomura A, Ookawa T, Hirasawa T, Yano M, Kondo M, Yamamoto T (2013) A natural variant of NAL1, selected in high-yield rice breeding programs, pleiotropically increases photosynthesis rate. Sci Rep 3:2149

    Article  PubMed  PubMed Central  Google Scholar 

  • Uehara Y, Kobayashi A, Koga Y, Uchiyamada H, Miura K, Fukui K, Shimizu H, Ohta H, Fujita Y, Okuno K, Ishizawa S, Horiuchi H, Nakagahara M (1995) Breeding of a new rice cultivar “Dontokoi”. Bull Hokuriku Natl Agric Exp Stn 37:107–131

    Google Scholar 

  • Ujiie K, Ishimaru K (2013) Identification of chromosome regions affecting leaf area with rice chromosome segment substitution lines. Plant Prod Sci 16:31–36

    Article  Google Scholar 

  • Ujiie K, Ishimaru K (2014) Alleles affecting 30 traits for productivity between 2 japonica rice varieties, Koshihikari and Nipponbare (Oryza sativa L.). Plant Prod Sci 17:47–65

    Article  Google Scholar 

  • Ujiie K, Kashiwagi T, Ishimaru K (2012) Identification and functional analysis of alleles for productivity in two sets of chromosome segment substitution lines of rice. Euphytica 187:325–337

    Article  CAS  Google Scholar 

  • Xing YZ, Tan YF, Hua JP, Sun XL, Xu CG, Zhang Q (2002) Characterization of the main effects, epistatic effects and their environmental interactions of QTLs on the genetic basis of yield traits in rice. Theor Appl Genet 105:248–257

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto Y, Yoshida T, Enomoto T, Yoshikawa G (1991) Characteristics for the efficiency of spikelet production and the ripening in high-yielding japonica-indica hybrid and semidwarf indica rice varieties. Jpn J Crop Sci 60:365–372

    Article  Google Scholar 

  • Yamauchi M (2001) Crop establishment and grain yield of direct sowing culture of rice with recycled-paper mulch. Jpn J Crop Sci 70:164–172

    Article  Google Scholar 

  • Yan J, Zhu J, He C, Benmoussa M, Wu P (1998) Molecular dissection of developmental behavior of plant height in rice (Oryza sativa L.). Genetics 150:1257–1265

    PubMed  CAS  PubMed Central  Google Scholar 

  • Yan CJ, Yan S, Yang YC, Zeng XH, Fang YW, Zeng SY, Tian CY, Sun YW, Tang SZ, Gu MH (2009) Development of gene-tagged markers for quantitative trait loci underlying rice yield components. Euphytica 169:215–226

    Article  CAS  Google Scholar 

  • Yoshida T, Anas Rosniawaty S, Setiamihardja R (2009) Genetic background of Indonesia rice germplasm and its relationship to agronomic characteristics and eating quality. Jpn J Crop Sci 78:335–343

    Article  Google Scholar 

  • Yu SB, Li JX, Xu CG, Tan YF, Gao YJ, Li XH, Zhang Q, Maroof MAS (1997) Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci USA 94:9226–9231

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by a grants from the Ministry of Agriculture, Forestry and Fisheries of Japan (Genomics for Agricultural Innovation, RBS2004). The seeds of Koshihikari were distributed from Rice Genome Resource Center in National Institute of Agrobiological Sciences. Yamamoto and Yano received the seeds of IR64 (IRGC66970) from International Rice Research Institute on the basis of standard material transfer agreement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken Ishimaru.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ujiie, K., Yamamoto, T., Yano, M. et al. Genetic factors determining varietal differences in characters affecting yield between two rice (Oryza sativa L.) varieties, Koshihikari and IR64. Genet Resour Crop Evol 63, 97–123 (2016). https://doi.org/10.1007/s10722-015-0237-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-015-0237-3

Keywords

Navigation