Skip to main content
Log in

Diversity and genetic structure of the husk tomato (Physalis philadelphica Lam.) in Western Mexico

  • Notes on Neglected and Underutilized Crops
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Physalis is an American plant genus that includes species of economic importance for their edible fruit. Consumption of this fruit is a historic tradition in Mexico. Physalis philadelphica is one of the most abundant species, which can grow under wild, weedy or cultivated conditions. It presents high morphological variability in terms of vegetative and reproductive traits; however, no study has been made of its genetic diversity or the impact of human activity on its diversity and differentiation patterns. We determined genetic parameters in nine populations representing a management gradient, including three wild, three weedy and three cultivated populations, using 88 inter-simple sequence repeat markers. The diversity of the total gene pool was high (Ht = 0.292, HT B  = 0.319) and did not decrease with the intensity degree of management. Reproductive system, life form and the wide distribution determined the genetic variation of the taxon. AMOVA revealed high variation within the total gene pool (44.3 %) and among populations (46.7 %). This was influenced by pollinator behavior, dispersal form, geographic discontinuity of the studied populations and human selection. Variation among population management categories was lower (9 %), indicating that this variable has little effect, most likely due to the broad gene pool of the taxon. However, analysis of genetic distance and Bayesian assignment distinguished two groups: cultivated and wild, with weedy populations interspersed between. This result suggests that selection for agricultural and morphological attributes of P. philadelphica contributes to this differentiation. Future studies could address the evolutionary dynamics of the wild–weedy–domesticated complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bitocchi E, Bellucci E, Giardini A, Rau D, Rodriguez M, Biagetti E, Santilocchi R, Spagnoletti ZP, Gioia T, Logozzo G, Attene G, Nanni L, Papa R (2013) Molecular analysis of the parallel domestication of the common bean (Phaseolus vulgaris) in Mesoamerica and the Andes. New Phytol 197:300–313

    Article  CAS  PubMed  Google Scholar 

  • Calyecac-Cortero HG, Cibrián-Tovar J, Soto-Hernández M, García-Velasco R (2007) Aislamiento e identificación de volátiles de Physalis philadelphica Lam. Agrociencia 41:337–346

    Google Scholar 

  • Casas A, Cruse J, Morales E, Otero-Arnaiz A, Valiente-Banuet A (2006) Maintenance of phenotypic and genotypic diversity of Stenocereus stellatus (Cactaceae) by indigenous peoples in Central Mexico. Biodiver Conserv 15:879–898

    Article  Google Scholar 

  • Casas A, Cruse J, Otero-Arnaiz A, Perez-Negron E, Valiente-Banuet A (2007) In situ management and domestication of plants in Mesoamerica. Ann Bot 100:1101–1115

    Article  PubMed Central  PubMed  Google Scholar 

  • Cipollini ML, Levey DJ (1997) Secondary metabolites of fleshy vertebrate-dispersed fruits: adaptive hypotheses and implications for seed dispersal. Am Nat 150:346–372

    Article  CAS  PubMed  Google Scholar 

  • Crow JF, Aoki K (1984) Group selection for a polygenic behavioral trait: estimating the degree of population subdivision. Proc Natl Acad Sci USA 81:6073–6077

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cruse-Sanders JM, Parker KC, Friar EA, Huang DI, Mashayekhi S, Prince LM, Otero-Arnaiz A, Casas A (2013) Managing diversity: domestication and gene flow in Stenocereus stellatus Riccob. (Cactaceae) in Mexico. Ecol Evol 3:1340–1355

    Article  PubMed Central  PubMed  Google Scholar 

  • D’Arcy WG (1991) The Solanaceae since 1976, with a review of its biogeography. In: Hawkes JG, Lester RN, Nee M, Estrada N (eds) Solanaceae III: taxonomy, chemistry and evolution. Royal Botanic Gardens, Kew, pp 75–137

    Google Scholar 

  • Díaz Pérez JC, Phatak SC, Giddings D, Bertrand D (2005) Root Zone temperatura, plant growth and fruit yield of tomatillo as affected by plastic film mulch. HortScience 40(5):1312–1319

    Google Scholar 

  • Ding G, Zhang D, Yu Y, Zhao L, Zhang B (2013) Population genetic diversity and divergence of the halobiotic herb Limonium sinense estimated by AFLP and ISSR, and implications for conservation. Plant Syst Evol 299:131–138

    Article  Google Scholar 

  • Doebley JF, Gaut BS, Smith BD (2006) The molecular genetics of crop domestication. Cell 127:1309–1321

    Article  CAS  PubMed  Google Scholar 

  • Domínguez C, Abarca A, Eguiarte LE, Molina-Freaner F (2005) Local Genetic differentiation among populations of the mass-flowering tropical shrub Erythroxylum havanense (Erythroxylaceae). New Phytol 166:663–672

    Article  PubMed  Google Scholar 

  • Doyle J, Doyle J (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Earl DE, vonHoltd BM (2012) Structure harvester: a website and program for visualizing structure output and implementing the Evanno method. Conserv Genet Resour 4:359–361

    Article  Google Scholar 

  • Eckert JE (1933) The flight range of the honeybee. J Agric Res 47:257–285

    Google Scholar 

  • Engels JMM, Ebert AW, Thormann I, de Vicente MC (2006) Centres of Crop diversity and/or origin, genetically modified crops and implications for plant genetic resources conservation. Genet Resour Crop Evol 53:1675–1688

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    CAS  PubMed Central  PubMed  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50

    CAS  PubMed Central  Google Scholar 

  • Fernandes RB (1974) Sur l´identification d´une espèce de Physalis souspantanèe au Portugal. Bol Soc Brot 44:343–366

    Google Scholar 

  • Gámez-Jiménez C, Romero-Romero JL, Santos-Cervantes ME, Leyva-López NE, Méndez-Lozano J (2009) Tomatillo (Physalis ixocarpa) as a natural new host for tomato yellow leaf curl virus in Sinaloa, Mexico. Plant Dis 93(5):545

    Article  Google Scholar 

  • Hamrick JL, Godt MJW (1996) Effects of life history traits on genetic diversity in plant species. Philos Trans R Soc Lond Biol Sci 351:1291–1298

    Article  Google Scholar 

  • Hanelt P, Institute of Plant Genetics and Crop Plant Research (IPK) (eds) (2001) Mansfeld’s encyclopedia of agricultural and horticultural crops. Springer, Berlin, pp 584–585

    Google Scholar 

  • Hedrick PW (2000) Genetics of populations. Jones and Bartlett, Massashussetts

    Google Scholar 

  • Holsinger KE (1999) Analysis of genetic diversity in geographically structured populations: a Bayesian perspective. Hereditas 130:245–255

  • Holsinger KE, Lewis PO (2007) Hickory: A package for analysis of population genetic data, version 1.1. Computer program and documentation. Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA. http://darwin.eeb.uconn.edu/hickory/hickory.html. Accessed 30 April 2013

  • Holzschuh A, Dormann CF, Tscharntke T, Steffan-Dewenter I (2013) Mass-flowering crops enhance wild bee abundance. Oecologia 172:477–484

    Article  PubMed Central  PubMed  Google Scholar 

  • Hudson WD (1986) Relationships of domesticated and wild Physalis philadelphica. In: D’Arcy WG (ed) Solanaceae: biology and systematics. Columbia University Press, New York, pp 416–432

    Google Scholar 

  • Jarvis DI, Padoc C, Cooper HD (2007) Biodiversity, agriculture and ecosystem services. In: Jarvis DI, Padoch C, Cooper HD (eds) Managing biodiversity in agricultural ecosystems. Columbia University Press, New York, pp 1–12

    Google Scholar 

  • Jha S, Kremen C (2013) Resource diversity and landscape-level homogeneity drive native bee foraging. Proc Natl Acad Sci USA 110:555–558

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kindscher K, Long Q, Corbett S, Bosnak K, Loring H, Cohen M, Timmermann BN (2012) The Ethnobotany and Ethnopharmacology of Wild Tomatillos, Physalis longifolia Nutt., and Related Physalis Species: a review. Econ Bot 20:1–13

    Google Scholar 

  • Ladizinsky G (1998) Plant Evolution under Domestication. Kluwer Academic, Londres

    Book  Google Scholar 

  • Leinonen T, O’hara RB, Cano JB, Merilä J (2008) Comparative studies of quantitative trait and neutral marker divergence: a meta-analysis. J Evol Biol 21:1–17

    CAS  PubMed  Google Scholar 

  • Li MH, Chen JM, Peng Y, Wu Q, Xiao PG (2008) Investigation of Danshen and related medicinal plants in China. J Ethnopharmacol 120(3):419–426

    Article  PubMed  Google Scholar 

  • Lynch M, Milligan BG (1994) Analysis of population genetic structure with RAPD markers. Mol Ecol 3:91–99

    Article  CAS  PubMed  Google Scholar 

  • Martin AC, Zim HS, Nelson AL (1961) American Wildlife and Plants. Dover, New York, pp 414–415

    Google Scholar 

  • Martínez M (1998) Revisión de Physalis sección Epeteiorhiza (Solanaceae). Ann Ins Biol Bot 69:71–117

    Google Scholar 

  • Miller MP (2000) Tools for population genetic analysis (TFPGA). Ver 1.3. Northern Arizona University. Arizona, E. U. A

  • Montes-Hernández S, Aguirre-Rivera JR, García-Moya E, González-Cosssio FV (1991) Algunos efectos de la domesticación sobre la morfología del tomate (Physalis philadelphica). Agrociencia 2:7–26

    Google Scholar 

  • Morjan Cl, Rieseberg IH (2004) How species evolve collectively: implications of gene flow and selection for the spread of advantageous alleles. Mol Ecol 13(6):1341–1356

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mulato-Brito J, Peña Lomeli A (2007) Germplasm evaluation of tomatillo (Physalis ixocarpa Brot.) cropped under Ontario, Canada and Chapingo, Mexico environmental conditions. Veget Crops Res Bull 66:117–127

    Google Scholar 

  • Nee M (1986) Solanaceae I. Flora de Veracruz 49:1-191. Instituto de Ecología, Xalapa, Veracruz

  • Nei M (1972) Genetic distance between populations. Am Nat 106:238–292

    Article  Google Scholar 

  • Nybom H, Bartish I (2000) Effects of life history traits and sampling strategies on genetic diversity estimates obtained with RAPD marker in plants. Perspect Plant Ecol Evol Syst 3:93–114

    Article  Google Scholar 

  • Olea WA, Lorenzo C, Naranjo E, Ortiz D, Leon Paniagua L (2007) Diversidad de frutos que consumen tres especies de murciélagos (Chiroptera: Phyllostomidae) en la selva lacandona, Chiapas, México. Rev Mex Biodivers 78:191–200

    Google Scholar 

  • Olsen KM, Wendel JF (2013) A bountiful harvest: genomic insights into crop domestication phenotypes. Annu Rev Plant Biol 64:47–70

    Article  CAS  PubMed  Google Scholar 

  • Oyama K, Hernández-Verdugo S, Sánchez C, González-Rodríguez A, Sánchez-Peña P, Garzo-Tiznado JA, Casas A (2006) Genetic structure of wild and domesticated populations of Capsicum annuum (Solanaceae) from northwestern Mexico analyzed by RAPDs. Genet Resour Crop Evol 53:553–562

    Article  Google Scholar 

  • Peña Lomelí A, Molina-Galán JD, Sahagún-Castellanos J, Ortiz-Cereceres J, Márquez-Sánchez F, Cervantes-Santana T, Santiaguillo-Hernández JF (2008) Parámetros genéticos en la variedad CHF1 chapingo de tomate de cáscara (Physalis ixocarpa Brot.). Rev Chapingo Ser Hortic 14(1):5–11

    Google Scholar 

  • Ponce Valerio JJ, Peña-Lomelí A, Rodríguez-Pérez JE, Mora-Aguilar R, Castro-Brindis R, Magaña-Lira N (2012) Densidad y poda en tres variedades de tomate de cáscara (Physalis ixocarpa Brot. ex Horm.) cultivado en invernadero. Rev Chapingo Ser Hortic 18:325–332

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed Central  PubMed  Google Scholar 

  • Raymond ML, Rousset F (1995) An exact test for population differentiation. Evolution 49:1280–1283

    Article  Google Scholar 

  • Sanguinetti C, Diaz-Neto F, Simpson AJ (1994) Rapid silver staining and recovery of PCR products separated on acrylamide gels. Biotechniques 17:915–918

    Google Scholar 

  • Sebbenn AM, Degen B, Azevedo VCR, Silva MB, de Lacerda AEB, Ciampi AY, Kanashiro M, Carneiro FS, Thompson I, Loveless MD (2008) Modelling the long-term impacts of selective logging on genetic diversity and demographic structure of four tropical tree species in the Amazon forest. For Ecol Manag 254:335–349

    Article  Google Scholar 

  • Shi W, Yang CF, Chen JM, Guo YW (2008) Genetic variation among wild and cultivated populationsof the Chinese medicinal plant Coptis chinensis (Ranunculaceae). Plant Biol 10:485–491

    Article  CAS  PubMed  Google Scholar 

  • Shilpha J, Silambarasan T, Pandian SK, Ramesh M (2013) Assessment of genetic diversity in Solanum trilobatum L., an important medicinal plant from South India using RAPD and ISSR markers. Genet Resour Crop Evol 60:807–818

    Article  CAS  Google Scholar 

  • SIAP Servicio de Información y Estadística Agroalimentaria y Pesquera (2012). Avances de Siembra y Cosecha. Año Agrícola 2012. www.siap.sagarpa.gob.mx

  • Song Z, Li X, Wang H, Wang J (2010) Genetic diversity and population structure of Salvia miltiorrhiza Bge in China revealed by ISSR and SRAP. Genetica 138:241–249

    Article  CAS  PubMed  Google Scholar 

  • Sullivan JR (1984) Pollination biology of Physalis viscosa var. cinerascens. Am J Bot 71:815–820

  • Tacuatia LO, Eggers L, Kaltchuk-Santos E, Souza-Chies TT (2012) Population genetic structure of Sisyrinchium micranthum Cav. (Iridaceae) in Itapuã State Park, Southern Brazil. Genet Mol Biol 35(1):99–105

    Article  PubMed Central  PubMed  Google Scholar 

  • Vargas-Ponce O, Martínez M, Dávila P (2003) La familia Solanaceae en Jalisco: el género Physalis. Colección Flora de Jalisco16. Universidad de Guadalajara, Guadalajara, pp 1–127

  • Vargas-Ponce O, Zizumbo-Villarreal D, Martinez-Castillo J, Coello-Coello J, Colunga-GarcíaMarín P (2009) Diversity and structure of landraces of Agave grown for spirits under traditional agriculture: A comparison with wild populations of A. angustifolia (Agavaceae) and A. tequilana commercial plantations. Am J Bot 96(2):448–457

  • Vargas-Ponce O, Pérez-Álvarez LF, Zamora-Tavares P, Rodríguez-Contreras A (2011) Assesing genetic diversity in Mexican husk tomato species. Plant Mol Biol Rep 29:733–738

  • Vibrans H (1999) Epianthropochory in Mexican weed communitys. Am J Bot 8(476):481

    Google Scholar 

  • Villanueva-Gutiérrez R, Quezada-Euan J, Eltz T (2013) Pollen diets of two sibling orchid bee species, Euglossa, in Yucatán, southern Mexico. Apidologie. doi:10.1007/s13592-013-0194-9

    Google Scholar 

  • Wakte KV, Zanan RL, Saini A, Jawali N, Thengane RJ, Nadaf AB (2012) Genetic diversity assessment in Pandanus amaryllifolius Roxb. populations of India. Genet Resour Crop Evol 59:1583–1595

    Article  Google Scholar 

  • Weir S, Cockerham C (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

  • Wenner AM, Meade D, Friesen LJ (1991) Recruitment, search behavior, and flight ranges of honey bees. Am Zool 31:768–782

    Google Scholar 

  • Wright S (1951) The genetical structure of populations. Ann Eug 15:323–354

    Article  CAS  Google Scholar 

  • Wright SI, Bi IV, Schroeder SG, Yamasaki M, Doebley JF et al (2005) The effects of artificial selection on the maize genome. Science 308:1310–1314

    Article  CAS  PubMed  Google Scholar 

  • Xu W, Bai W, Wen G, Huai H, Liu A (2013) Influences of harvesting on genetic diversity and population structure of Anemone altaica (Ranunculaceae), a traditional Chinese medicinal herb. Biochem Syst Ecol 47:121–125

    Article  CAS  Google Scholar 

  • Yang L, Guoying Z, Guichen C (2011) Genetic diversity and population structure of Swertia tetraptera (Gentianaceae), an endemic species of Qinghai-Tibetan Plateau. Biochem Syst Ecol 39:302–308

    Article  CAS  Google Scholar 

  • Yeh F, Yang RC, Boyle JT (1999) Popgene version 1.31. Microsoft windows-based freeware for population genetics analysis. University of Alberta and Centre for International Forestry Research, Edmonton

    Google Scholar 

  • Zietkiewicz E, Rafalski A, Labuda D (1994) Genoma fingerprinting by simple sequence repeat (SSR) anchored polymerase chain reaction amplification. Genomics 20:176–181

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research is part of P Zamora’s graduate thesis in Systematic molecular plants Laboratory at Institute of Botany of CUCBA. This work was supported by SEP-PROMEP (2009–2010) and SINAREFI-SAGARPA (Hort-Tom-2008) to OVP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ofelia Vargas-Ponce.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zamora-Tavares, P., Vargas-Ponce, O., Sánchez-Martínez, J. et al. Diversity and genetic structure of the husk tomato (Physalis philadelphica Lam.) in Western Mexico. Genet Resour Crop Evol 62, 141–153 (2015). https://doi.org/10.1007/s10722-014-0163-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-014-0163-9

Keywords

Navigation