Skip to main content
Log in

Improvement of Sclerotinia sclerotiorum resistance in Brassica napus by using B. oleracea

  • Short Communication
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Sclerotinia stem rot is one of the most serious diseases in rapeseed (Brassica napus) due to the lack of resistance sources. A high level of resistance was reported in Brassica oleracea cytodeme, one of parental species of rapeseed. In this study, a panel of 55 resynthesized lines of B. napus (RS lines) derived from seven wild and two cultivated types of B. oleracea was evaluated for Sclerotinia resistance over 2 years. Relative to ‘Zhongyou 821’, a cultivar of B. napus with partial resistance against S. sclerotiorum, RS lines exhibited stronger stem resistance. Although the resistant level of RS lines was lower than that of corresponding parental B. oleracea, a moderate correlation between resistance of RS line and corresponding parental B. oleracea type was found both for leaf (r = 0.74, P = 0.02) and stem (r = 0.69, P = 0.04). Our data suggests that the RS lines are important resources to improve Sclerotinia resistance of current rapeseed. A breeding strategy is discussed to enhance the Sclerotinia resistance of rapeseed by using B. oleracea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Abawi GS, Polach FJ, Molin WT (1975) Infection of bean by ascospores of Sclerotinia sclerotiorum. Phytopathology 65:673–678

    Article  Google Scholar 

  • Becker HC, Engqvist GM, Karlssom B (1995) Comparison of rapeseed cultivars and resynthesized lines based on allozyme and RFLP markers. Theor Appl Genet 91:62–67

    Article  CAS  Google Scholar 

  • Cheung F, Trick M, Drou N, Lim YP, Park JY, Kwon SJ, Kim JA, Scott R, Pires JC, Paterson AH, Town C, Bancroft I (2009) Comparative analysis between homoeologous genome segments of Brassica napus and its progenitor species reveals extensive sequence-level divergence. Plant Cell 21:1912–1928

    Article  PubMed  CAS  Google Scholar 

  • Crouch JH, Lewis BG, Mithen RF (1994) The effect of A genome substitution on the resistance of Brassica napus to infection by Leptosphaeria maculans. Plant Breed 112:265–278

    Article  CAS  Google Scholar 

  • Diederichsen E, Sacristan MD (1996) Disease response of resynthesized Brassica napus L. lines carrying different combinations of resistance to Plasmodiophora brassicae Wor. Plant Breed 115:5–10

    Article  Google Scholar 

  • Dreyer F, Graichen K, Jung C (2001) A major quantitative trait locus for resistance to Turnip Yellows Virus (TuYV, syn. beet western yellows virus, BWYV) in rapeseed. Plant Breed 120:457–462

    Article  CAS  Google Scholar 

  • Dunker S, von Tiedemann A (2004) Disease yield loss analysis for Sclerotinia stem rot in winter oilseed rape. IOBC 27:59–65

    Google Scholar 

  • Ellis PR, Pink DAC, Barber NE, Mead A (1999) Identification of high levels of resistance to cabbage root fly, Delia radicum, in wild Brassica species. Euphytica 110:207–214

    Article  Google Scholar 

  • Girke A, Schierholt A, Becker HC (2012a) Extending the rapeseed genepool with resynthesized Brassica napus L. I: genetic diversity. Genet Resour Crop Evol 59:1441–1447

    Article  CAS  Google Scholar 

  • Girke A, Schierholt A, Becker HC (2012b) Extending the rapeseed gene pool with resynthesized Brassica napus II: heterosis. Theor Appl Genet 124:1017–1026

    Article  PubMed  Google Scholar 

  • Happstadius I, Ljungberg A, Kristiansson B, Dixelius C (2003) Identification of Brassica oleracea germplasm with improved resistance to Verticillium wilt. Plant Breed 122:30–34

    Article  Google Scholar 

  • Hind TL, Ash GJ, Murray GM (2003) Prevalence of Sclerotinia stem rot of canola in New South Wales. Aust J Exp Agr 43:163–168

    Article  Google Scholar 

  • Lamey HA (2003) The status of Sclerotinia sclerotiorum on canola in North America. In: Proceedings of Sclerotinia initiative annual meeting. MN, Bloomington

    Google Scholar 

  • Mei J, Li Q, Qian L, Fu Y, Li J, Frauen M, Qian W (2011a) Genetic investigation of the origination of allopolyploid with virtually synthesized lines: application to the C subgenome of Brassica napus. Heredity 106:955–961

    Article  PubMed  CAS  Google Scholar 

  • Mei J, Qian L, Disi JO, Yang X, Li Q, Li J, Frauen M, Cai D, Qian W (2011b) Identification of resistant sources against Sclerotinia sclerotiorum in Brassica crops with emphasis on B. oleracea. Euphytica 177:393–400

    Article  Google Scholar 

  • Mei J, Wei D, Disi JO, Ding Y, Liu Y, Qian W (2012) Screening resistance against Sclerotinia sclerotiorum in Brassica crops with use of detached stem assay under controlled environment. Eur J Plant Pathol 134:599–604

    Article  Google Scholar 

  • Mei J, Ding Y, Lu K, Wei D, Liu Y, Disi J, McKay J, Qian W (2013) Identification of genomic regions involved in resistance against Sclerotinia sclerotiorum from wild Brassica oleracea. Theor Appl Genet 126:549–556

    Article  PubMed  CAS  Google Scholar 

  • Mithen R, Magrath R (1992) Glucosinolates and resistance to Leptosphaeria maculans in wild and cultivated Brassica species. Plant Breed 108:60–68

    Article  CAS  Google Scholar 

  • Mithen R, Lewis B, Heaney R, Fenwick G (1987) Resistance of leaves of Brassica species to Leptosphaeria maculans. Trans Br Mycol Soc 88:525–531

    Article  Google Scholar 

  • Pope SJ, Varney PL, Sweet JB (1989) Susceptibility of cultivars of oilseed rape to Sclerotinia sclerotiorum and the effect of infection on yield. Asp Appl Biol 23:451–456

    Google Scholar 

  • Ramsey AD, Ellis PR (1994) Resistance in wild Brassica to the cabbage whitefly, Aleyrodes proletella. In: proceedings of the ninth crucifer genetics workshop. Acta Hortic 407

  • Rana D, Boogaart T, O’Neill CM, Hynes L, Bent E, Macpherson L, Park JM, Lim YP, Bancroft I (2004) Conservation of the microstructure of genome segments in Brassica napus and its diploid relatives. Plant J 40:725–733

    Article  PubMed  CAS  Google Scholar 

  • SAS Institute (1992) SAS technical report. SAS statistics software: changes and enhancements. Release 6.07

  • Seyis F, Snowdon RJ, Lühs W, Friedt W (2003) Molecular characterization of novel resynthesized rapeseed (Brassica napus) lines and analysis of their genetic diversity in comparison with spring rapeseed cultivars. Plant Breed 122:473–478

    Article  CAS  Google Scholar 

  • Snogerup S, Gustafsson M, Von Bothmer R (1990) Brassica sect. Brassica (Brassicaceae) I. Taxonomy and variation. Willdenowia 19:271–365

  • Udall JA, Quijada PA, Polewicz H, Vogelzang R, Osborn TC (2004) Phenotypic effects of introgressing Chinese winter and resynthesized Brassica napus L. germplasm into hybrid spring canola. Crop Sci 44:1990–1996

    Article  Google Scholar 

  • Walsh JA, Sharpe G, Jenner CE, Lydiate DJ (1999) Characterisation of resistance to turnip mosaic virus in oilseed rape (Brassica napus) and genetic mapping of TuRB01. Theor Appl Genet 99:1149–1154

    Article  CAS  Google Scholar 

  • Yin XR, Yi B, Chen W, Zhang WJ, Tu JX, Fernando WGD, Fu TD (2010) Mapping of QTLs detected in a Brassica napus DH population for resistance to Sclerotinia sclerotiorum in multiple environments. Euphytica 173:25–35

    Article  CAS  Google Scholar 

  • Zhao J, Meng J (2003) Genetic analysis of loci associated with partial resistance to Sclerotinia sclerotiorum in rapeseed (Brassica napus L.). Theor Appl Genet 106:759–764

    PubMed  Google Scholar 

  • Zhao JW, Udall JA, Quijada PA, Grau CR, Meng JL, Osborn TC (2006) Quantitative trait loci for resistance to Sclerotinia sclerotiorum and its association with a homeologous non-reciprocal transposition in Brassica napus L. Theor Appl Genet 112:509–516

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We sincerely thank Dr. Martin Frauen for the discussion on this study. This work was supported financially by grants from Special Fund for Agroscientific Research in the Public Interest (201103016), NSFC (31171585), CSTC 201180001, National Key Technology R & D Program (2010BAD01B02), DAAD (A/10/00321) and 111 Project (B12006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Qian.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10722_2013_9978_MOESM1_ESM.xls

Parentage origin and relative Sclerotinia susceptibility to rapeseed ‘Zhongyou 821’ of 55 resynthesized lines used in the study. The types of B. oleracea cytodeme were identified in the previous study (Mei et al. 2011b) (XLS 33 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, Y., Mei, J., Li, Q. et al. Improvement of Sclerotinia sclerotiorum resistance in Brassica napus by using B. oleracea . Genet Resour Crop Evol 60, 1615–1619 (2013). https://doi.org/10.1007/s10722-013-9978-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-013-9978-z

Keywords

Navigation