Skip to main content
Log in

Biochemical, sensorial and genomic profiling of traditional Italian tomato varieties

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Fruit flavour of traditional tomato ecotypes differs from that of modern varieties, the latter being often blamed for lack of flavour. To respond to consumer complaints breeders should know the range of genetic variability available in tomato resources, including local ecotypes, for improving flavour. For this purpose, multitrait characterization, including biochemical, sensorial and molecular analyses, was performed on 12 Italian tomato ecotypes that belong to different types (San Marzano, Sorrento, and Vesuvio). The ecotypes showed a significant variation both in glucose and citric acid content. As for amino acid determination, lysine, aspartic acid and serine showed significant variation among the three types analyzed. Sensory analysis clearly evidenced differences among genotypes: the San Marzano ecotypes revealed sensory profiles that differ from the control processing variety in perception of sweetness and sourness, whereas the Sorrento and Vesuvio ecotype profiles were similar to the fresh market control. In particular, Vesuvio genotypes exhibited a good intensity of tomato aroma and sweetness and an intermediate level of acidity. Finally, molecular characterization performed through AFLP markers provided evidence for a very high level of polymorphism: an ecotype-specific AFLP pattern was identified for at least 11 genotypes, thus defining their molecular fingerprints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Baldwin EA, Scott JW, Einstein MA, Malundo TMM, Carr BT, Shewfelt RL et al (1998) Relationship between sensory and instrumental analysis for tomato flavour. J Am Soc Hortic Sci 123:906–915

    CAS  Google Scholar 

  • Bryun JW, Garretsen F, Kooistra E (1971) Variation in taste and chemical composition of the tomato (Lycopersicon esculentum). Euphytica 20:214–227. doi:10.1007/BF00056081

    Article  Google Scholar 

  • Bucheli P, Voirol E, de la Torre R, Rytz A, Tanksley SD, Pétiard V (1999) Definition of non-volatile markers for flavor of tomato (Lycopersicon esculentum Mill.) as tools in selection and breeding. J Food Agric Chem 47:659–664. doi:10.1021/jf980875l

    Article  CAS  Google Scholar 

  • Causse M, Saliba-Colombani V, Lecomte L, Duffé P, Rousselle P, Buret M (2002) QTL analysis of fruit quality in fresh market tomato: a few chromosome regions control the variation of sensory and instrumental traits. J Exp Bot 53:2089–2098. doi:10.1093/jxb/erf058

    Article  PubMed  CAS  Google Scholar 

  • Davies JN, Hobson GE (1981) The constituent of tomato fruit—the influence of environment, nutrition, and genotype. Crit Rev Food Sci Technol 15:205–280

    Article  CAS  Google Scholar 

  • De Giovanni C, Dell’Orco P, Bruno A, Ciccarese F, Lotti C, Ricciardi L (2004) Identification of PCR-based markers (RAPD, AFLP) linked to a novel powdery mildew resistance gene (ol-2) in tomato. Plant Sci 166:41–48. doi:10.1016/j.plantsci.2003.07.005

    Article  CAS  Google Scholar 

  • Dice LR (1945) Measures of the amount of ecological association between species. Ecology 26:297–302. doi:10.2307/1932409

    Article  Google Scholar 

  • Fernie AR, Trethewey RN, Krotzky AJ, Willmitzer L (2004) Metabolite profiling: from diagnostics to systems biology. Nat Rev Mol Cell Biol 5:763–769. doi:10.1038/nrm1451

    Article  PubMed  CAS  Google Scholar 

  • Fuke S, Shimizu T (1993) Sensory and preference aspects of umami. Trends Food Sci Technol 4:246–251. doi:10.1016/0924-2244(93)90139-2

    Article  CAS  Google Scholar 

  • Fulton TM, Bucheli P, Voirol E, Lopez J, Petiard V, Tanksley SD (2002) Quantitative trait loci (QTL) affecting sugars, organic acids and other biochemical properties possibly contributing to flavor, identified in four advanced backcross populations of tomato. Euphytica 127:163–177. doi:10.1023/A:1020209930031

    Article  CAS  Google Scholar 

  • Füzfai Z, Katona ZF, Kovács E, Molnár-Perl I (2004) Simultaneous identification and quantification of the sugar, sugar alcohol, and carboxylic acid contents of sour cherry, apple, and ber fruits, as their trimethylsilyl derivatives, by gas chromatography-mass spectrometry. J Agric Food Chem 52:7444–7452. doi:10.1021/jf040118p

    Article  PubMed  CAS  Google Scholar 

  • Gartenmann K, Kochhar S (1999) Short-chain peptide analysis by high-performance liquid chromatography coupled to electrospray ionization mass spectrometer after derivatization with 9-fluorenylmethyl chloroformate. J Agric Food Chem 47:5068–5071. doi:10.1021/jf990710s

    Article  PubMed  CAS  Google Scholar 

  • Gennaro L, Leonardi C, Esposito F, Salucci M, Maiani G, Quaglia G et al (2002) Flavonoid and carbohydrate contents in Tropea red onions: effects of homelike peeling and storage. J Agric Food Chem 50:1904–1910. doi:10.1021/jf011102r

    Article  PubMed  CAS  Google Scholar 

  • Haanstra JPW, Wye C, Verbakel H, Meijer-Dekens F, van den Berg P, Odinot P et al (1999) An integrated high-density RFLP-AFLP map of tomato based on two Lycopersicon esculentum x (L. pennellii) F2 populations. Theor Appl Genet 99:254–271. doi:10.1007/s001220051231

    Article  CAS  Google Scholar 

  • Kaloshian I, Yaghoobi J, Liharska T, Hontelez J, Hanson D, Hogan P et al (1998) Genetic and physical localization of the root-knot nematode resistance locus in tomato. Mol Gen Genet 257:376–385. doi:10.1007/s004380050660

    Article  PubMed  CAS  Google Scholar 

  • Lee HS (1993) HPLC method for separation and determination of non-volatile organic acids in orange juice. J Agric Food Chem 41:1991–1993. doi:10.1021/jf00035a033

    Article  CAS  Google Scholar 

  • Lisso J, Altmann T, Mussig C (2006) Metabolic changes in fruits of the tomato dx mutant. Phytochemistry 67:2232–2238. doi:10.1016/j.phytochem.2006.07.008

    Article  PubMed  CAS  Google Scholar 

  • Malundo TMM, Shewfelt RL, Scott JW (1995) Flavour quality of fresh tomato (Lycopersicon esculentum Mill.) as affected by sugar and acid levels. Postharvest Biol Technol 6:103–110. doi:10.1016/0925-5214(94)00052-T

    Article  CAS  Google Scholar 

  • McCluskey JJ, Loureiro ML (2003) Consumer preferences and willingness to pay for food labeling: a discussion of empirical studies. J Food Distrib Res 34(3):95–102

    Google Scholar 

  • Nuez F, Prohens J, Blanca JM (2004) Relationships, origin, and diversity of Galapagos tomatoes: implications for the conservation of natural populations. Am J Bot 91:86–99. doi:10.3732/ajb.91.1.86

    Article  Google Scholar 

  • Park YH, West MA, St Clair DA (2004) Evaluation of AFLPs for germplasm fingerprinting and assessment of genetic diversity in cultivars of tomato (Lycopersicon esculentum L.). Genome 47:510–518. doi:10.1139/g04-004

    Article  PubMed  CAS  Google Scholar 

  • Roessner U, Willmitzer L, Fernie AR (2001) High-resolution metabolic phenotyping of genetically and environmentally diverse potato tuber systems. Identification of phenocopies. Plant Physiol 127(3):749–764. doi:10.1104/pp.127.3.749

    Article  PubMed  CAS  Google Scholar 

  • Rohlf FJ (1998) NTSYS-pc: numerical taxonomy and multivariate system, ver. 2.0. Exeter Software publisher, New York

    Google Scholar 

  • Saliba-Colombani V, Causse M, Gervais L, Philouze J (2000) Efficiency of RFLP, RAPD, and AFLP markers for the construction of an intraspecific map of the tomato genome. Genome 43:29–40. doi:10.1139/gen-43-1-29

    Article  PubMed  CAS  Google Scholar 

  • Salles C, Nicklaus S, Septier C (2003) Determination and gustatory properties of taste-active compounds in tomato juice. Food Chem 81:395–402. doi:10.1016/S0308-8146(02)00469-7

    Article  CAS  Google Scholar 

  • Schauer N, Semel Y, Roessner U, Balbo I, Carrari F, Pleban T et al (2006) Comprehensive metabolic profiling and phenotyping of interspecific introgression lines for tomato improvement. Nat Biotechnol 24:447–454. doi:10.1038/nbt1192

    Article  PubMed  CAS  Google Scholar 

  • Sims WL (1980) History of tomato production for industry around the world. Acta Hortic 100:25–26

    Google Scholar 

  • Staub JE, Serquen FC, Gupta M (1996) Genetic markers, map construction and their application in plant breeding. Hortic Sci 31:729–741

    CAS  Google Scholar 

  • Stevens MA (1986) Inheritance of tomato fruit quality components. Plant Breed Rev 4:273–311

    Google Scholar 

  • Stevens MA, Kader AA, Albright-Halton M, Algazi M (1977) Genotypic variation for flavor and composition in fresh-market tomatoes. J Am Soc Hortic Sci 102:680–689

    CAS  Google Scholar 

  • Stevens MA, Kader AA, Albright M (1979) Potential for increasing tomato flavor via sugar and acid contents. J Am Soc Hortic Sci 104:40–42

    Google Scholar 

  • Thomas CM, Vos P, Zabeau M, Jones DA, Norcott KA, Chadwick BP et al (1995) Identification of amplified restriction fragment polymorphism (AFLP) markers tightly linked to the tomato Cf-9 gene for resistance to Cladosporium fulvum. Plant J 8:785–794. doi:10.1046/j.1365-313X.1995.08050785.x

    Article  PubMed  CAS  Google Scholar 

  • Tieman DM, Zeigler M, Schmelz EA, Taylor MG, Bliss P, Kirst M et al (2006) Identification of loci affecting flavour volatile emissions in tomato fruits. J Exp Bot 57(4):887–896. doi:10.1093/jxb/erj074

    Article  PubMed  CAS  Google Scholar 

  • Vos PR, Hogers M, Bleeker M, Van de Lee R, Hornes M, Frijters A et al (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414. doi:10.1093/nar/23.21.4407

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Mark Walters for editing the manuscript, Angela Cozzolino for her technical assistance and Ciro Boccia for his help with sensory analysis. This work was performed in the framework of the project “Risorse Genetiche di organismi utili per il miglioramento di specie di interesse agrario e per un’agricoltura sostenibile” funded by the MiPAF. Contribution no. 175 from the DISSPAPA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Ercolano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ercolano, M.R., Carli, P., Soria, A. et al. Biochemical, sensorial and genomic profiling of traditional Italian tomato varieties. Euphytica 164, 571–582 (2008). https://doi.org/10.1007/s10681-008-9768-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-008-9768-4

Keywords

Navigation