Skip to main content
Log in

High frequency oligonucleotides: targeting active gene (HFO-TAG) markers revealed wide genetic diversity among Citrullus spp. accessions useful for enhancing disease or pest resistance in watermelon cultivars

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

There is a continuous need to enhance watermelon cultivars for disease and pest resistance. Different U.S. Plant Introductions (PIs) of Citrullus lanatus subsp. lanatus var. lanatus [also known as C. lanatus (Thunb.) Matsum. et Nakai subsp. lanatus var. citroides (Bailey) Mansf. ex Greb.] (CLC) collected in southern Africa are a useful source for enhancing disease or pest resistance in watermelon cultivars. They are also valuable as rootstocks for grafted watermelon, particularly in fields infested with root-knot nematodes or Fusarium wilt. However, there is little information about genetic relationships among these PIs. In this study, genetic diversity was examined among 74 CLC PIs collected from their center of origin in southern Africa. Also, 15 Citrullus lanatus subsp. lanatus (CLL) PIs and the American heirloom cultivars Charleston Gray and Black Diamond (Citrullus lanatus subsp. vulgaris (Schrader ex Eckl. et Zeyh.) Fursa) (CLV) and five Citrullus colocynthis (L.) Schrader (CC) PIs collected in different locations throughout the world were used as out-groups in the phylogenetic analysis for the CLC PIs. Twenty-three high frequency oligonucleotides—targeting active gene (HFO-TAG) primers were used in polymerase chain reaction (PCR) experiments to produce a total of 562 polymorphic markers among the Citrullus PIs and cultivars. Cluster and multidimensional scaling plot analysis produced distinct groups of CLC, CLL, and CC PIs. Several PIs that were designated as CLC or CLL were in transitional positions, indicating that they are the result of gene flow between the major Citrullus groups or subgroups. Population structure analysis indicated that CLC comprises two subgroups; each containing a set of unique alleles. Also, unique alleles exist in the CLL and the CC genotypes. Overall, broad genetic diversity exists among the Citrullus PIs. The data in this study should be useful for identifying PIs with a wide genetic distance between them that could be used in breeding programs aiming to develop heterotic F1 hybrid rootstock lines for grafted watermelon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Barata C, Carena MJ (2006) Classification of North Dakota maize inbred lines into heterotic groups based on molecular and testcross data. Euphytica 151:339–349

    Article  CAS  Google Scholar 

  • Bates DM, Robinson RW (1995) Cucumbers melon and watermelons. In: Smart J, Simmonds NW (eds) Evolution of crop plants, 2nd edn. Longman, London, UK, pp 89–96

    Google Scholar 

  • Boyhan GE, Norton JD, Abrahams BR, Wen NH (1994) A new source of resistance to anthracnose (Race 2) in watermelon. HortScience 29:111–112

    Google Scholar 

  • Buckler ES IV, Phelps-Durr TL, Keith Buckler CS, Dawe RK, Doebley JF, Holtsford TP (1999) Meiotic drive of chromosomal knobs reshaped the maize genome. Genetics 153:415–426

    PubMed  CAS  Google Scholar 

  • Burkill HM (1985) The useful plants of west tropical Africa, 2nd edn, vol 1. Royal Botanic Gardens, Kew

  • Cheres MT, Miller JF, Crane JM, Knapp SJ (2000) Genetic distance as a predictor of heterosis and hybrid performance within and between heterotic groups in sunflower. Theor Appl Genet 100:889–894

    Article  Google Scholar 

  • Cohen R, Burger Y, Horev C, Koren A, Edelstein M (2007) Introducing grafted cucurbits to modern agriculture: the Israeli experience. Plant Dis 91:916–923

    Article  Google Scholar 

  • Dahl Jensen B, Touré FM, Hamattal MA, Touré FA, Nantoumé AD (2011) Watermelons in the Sand of Sahara: cultivation and use of indigenous landraces in the Tombouctou Region of Mali. Ethnobotany Research & Applications 9:151–162

    Google Scholar 

  • Dane F, Lang P (2004) Sequence variation at cpDNA regions of watermelon and related species: implications for the evolution of Citrullus haplotypes. Am J Bot 91:1922–1929

    Article  PubMed  CAS  Google Scholar 

  • Dane F, Liu J (2007) Diversity and origin of cultivated and citron type watermelon (Citrullus lanatus). Genet Resour Crop Evol 54:1255–1265

    Article  CAS  Google Scholar 

  • Dane F, Hawkins LK, Norton JD (1998) New resistance to race 2 of Fusarium oxysporum f. sp. niveum in watermelon. Cucurbit Genet Coop Report 21:37–39

    Google Scholar 

  • Davis AR, Levi A, Tetteh A, Wehner T, Russo V, Pitrat M (2007) Evaluation of watermelon and related species for resistance to race 1 W powdery mildew. J Amer Hort Sci 132:790–795

    Google Scholar 

  • De Winter B (1990) A new species of Citrullus (Benincaseae) from the Namib desert, Namibia. Bothalia 20:209–211

    Google Scholar 

  • Dhliwayo T, Pixley K, Menkir A, Warburton M (2009) Combining ability, genetic distances, and heterosis among elite CIMMYT and IITA tropical maize inbred lines. Crop Sci 49:1301–1310

    Article  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 7:574–578

    Article  PubMed  CAS  Google Scholar 

  • FAOSTAT (2012) Food and Agriculture Organization of the United Nations http://faostat.fao.org

  • Fursa TB (1972) On the taxonomy of the genus Citrullus Schad. Botanicheskij Zhurnal 57:31–34

    Google Scholar 

  • Gillaspie AG Jr, Wright JM (1993) Evaluation of Citrullus sp. germplasm for resistance to watermelon Mosaic Virus 2. Plant Dis 77:352–354

    Article  Google Scholar 

  • Gusmini G, Song R, Wehner TC (2005) New sources of resistance to gummy stem blight in watermelon. Crop Sci 45:582–588

    Article  Google Scholar 

  • Harris KR, Wechter WP, Levi A (2009a) Isolation, sequence analysis, and linkage mapping of NBS-LRR disease resistance gene homologs in watermelon. J Amer Soc Hort Sci 134:649–657

    Google Scholar 

  • Harris KR, Ling K, Levi A, Wechter WP (2009b) Identification and utility of markers linked to the zucchini yellow mosaic virus resistance gene in watermelon. J Amer Soc Hort Sci 134:529–534

    Google Scholar 

  • Jarret RL, Merrick LC, Holms T, Evans J, Aradhya MK (1997) Simple sequence repeats in watermelon [Citrullus lanatus (Thunb.) Matsum. & Nakai]. Genome 40:433–441

    Article  PubMed  CAS  Google Scholar 

  • Jeffrey C (2001) Cucurbitaceae. In: Hanelt P, Institute of Plant Genetics and Crop Plant Research (eds) Mansfeld’s encyclopedia of agricultural and horticultural crops, vol 3. Springer, Berlin, pp 1510–1557

  • Jones RM (1965) Analysis of variance of the half diallel table. Heredity 20:117–121

    Article  Google Scholar 

  • Laghetti G, Hammer K (2007) The Corsican citron melon (Citrullus lanatus (Thunb.) Matsum. et Nakai subsp. lanatus var. citroides (Bailey) Mansf. ex Greb.) a traditional and neglected crop. G. Genet Resour Crop Evol 54:913–916

    Article  Google Scholar 

  • Levi A, Thomas CE (1999) An improved procedure for isolation of high quality DNA from watermelon and melon leaves. Cucurbit Genet Coop Rep 22:41–42

    Google Scholar 

  • Levi A, Thomas CE, Keinath AP, Wehner TC (2001a) Genetic diversity among watermelon (Citrullus lanatus and Citrullus colocynthis) accessions. Genet Resour Crop Evol 48:559–566

    Article  Google Scholar 

  • Levi A, Thomas CE, Wehner TC, Zhang X (2001b) Low genetic diversity indicates the need to broaden the genetic base of cultivated watermelon. HortScience 36:1096–1101

    CAS  Google Scholar 

  • Levi A, Davis A, Hernandez A, Wechter P, Thimmapuram J, Tadmor Y, Katzir N, Trebitsh T, King S (2006) Genes expressed during the development and ripening of watermelon fruit. Plant Cell Rep 25:1233–1245

    Article  PubMed  CAS  Google Scholar 

  • Levi A, Wechter P, Davis A (2009) EST-PCR markers representing watermelon fruit genes are polymorphic among watermelon heirloom cultivars sharing a narrow genetic base. Plant Genet Resour 7:16–32

    Article  CAS  Google Scholar 

  • Levi A, Wechter WP, Harris-Shultz KR, Davis AR, Fie Z (2010) High-frequency oligonucleotides in watermelon expressed sequenced tag-unigenes are useful in producing polymorphic polymerase chain reaction markers among watermelon genotypes. J Amer Hort Sci 135:369–378

    Google Scholar 

  • Levi A, Wechter WP, Massey LM, Carter L, Hopkins D (2011) Genetic linkage map of Citrullus lanatus var. citroides chromosomal segments introgressed into the watermelon cultivar Crimson Sweet (Citrullus lanatus var. lanatus) genome. American Journal of Plant Sciences 2:93–110

    Article  CAS  Google Scholar 

  • Luan F, Sheng Y, Wang Y, Staub JE (2010) Performance of melon hybrids derived from parents of diverse geographic origins. Euphytica 173:1–16

    Article  CAS  Google Scholar 

  • Martyn RD, Netzer D (1991) Resistance to races 0, 1 and 2 of Fusarium wilt of watermelon in Citrullus sp. PI-296341-FR. HortScience 26:429–432

    Google Scholar 

  • Meeuse AD (1962) The Cucurbitaceae of Southern Africa. Bothalia 8:1–111

    Google Scholar 

  • Melchinger AE, Gumber RK (1998) Overview of heterosis and heterotic groups in agronomic crops. In: Lamkey KR, Staub JE (eds) Concepts and breeding of heterosis in crop plants. CSSA Spec. Publ. 25. CSSA, Madison, WI, pp. 29–44

  • Mujaju C, Fatih M (2011) Distribution patterns of cultivated watermelon forms in Zimbabwe using DIVA-GIS. International Journal of Biodiversity and Conservation 39:474–481

    Google Scholar 

  • Mujaju C, Sehic J, Werlemark G, Garkava-Gustavsson L, Faith M, Nybom H (2010) Genetic diversity in watermelon (Citrullus lanatus) landraces from Zimbabwe revealed by RAPD and SSR markers. Hereditas 147:142–153

    Article  PubMed  CAS  Google Scholar 

  • Mujaju C, Zborowska A, Werlemark G, Garkava-Gustavsson L, Andersen SB, Nybom H (2011) Genetic diversity among and within watermelon (Citrullus lanatus) landraces in southern Africa. Journal of Horticultural Science & Biotechnology 86:353–358

    Google Scholar 

  • Nei M, Li W (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76:5269–5273

    Article  PubMed  CAS  Google Scholar 

  • Pavlicek A, Hrda S, Flegr J (1999) FreeTree-Freeware program for construction of phylogenetic trees on the basis of distance data and bootstrap/jackknife analysis of the tree robustness. Application in the RAPD analysis of the genus Frenkelia. Folia Biol 45:97–99

    CAS  Google Scholar 

  • Rohlf FJ (1998) NTSYS-PC numerical taxonomy and multivariate analysis system, ver. 2.2. Exeter Publishing, Ltd., Setauket, NY

  • Sowell G, Pointer GR (1962) Gummy stem blight resistance in introduced watermelons. Plant Dis Rep 46:883–885

    Google Scholar 

  • Sowell G Jr, Rhodes BB, Norton JD (1980) New sources of resistance to watermelon anthracnose. J Am Soc Hort Sci 105:197–199

    Google Scholar 

  • Teklewold A, Becker HC (2006) Comparison of phenotypic and molecular distances to predict heterosis and F1 performance in Ethiopean mustard (Brassica carinata A. Braun). Theor Appl Genet 112:752–759

    Article  PubMed  CAS  Google Scholar 

  • Tetteh AY, Wehner TC, Davis AR (2010) Identifying resistance to powdery mildew race 2 W in the USDA-ARS watermelon germplasm collection. Crop Sci 50:933–939

    Article  Google Scholar 

  • Thies JA, Levi A (2003) Resistance of watermelon (Citrullus spp.) germplasm to the peanut root-knot nematode (Meloidogyne arenaria race 1). HortScience 38:1417–1421

    Google Scholar 

  • Thies JA, Levi A (2007) Characterization of watermelon (Citrullus lanatus var. citroides) germplasm for resistance to root-knot nematodes. J Nematol 42:1530–1533

    Google Scholar 

  • Thies J, Ariss J, Hassell R, Kousik C, Olson S, Levi A (2010) Grafting for managing southern root-knot nematode, Meloidogyne incognita, in watermelon. Plant Dis 94:1195–1199

    Article  Google Scholar 

  • USDA, NASS (2009) Watermelons, vegetables, potatoes, and melons harvested for sale: 2007 and 2002, 2007 Census of Agriculture-State Data, National Agricultural Statistics Service, USDA

  • van der Vossen HAM, Denton OA, El Tahir IM (2004) Citrullus lanatus. In: Grubben GJH, Denton OA (eds) Plant resources of tropical Africa, vol 2. Vegetables. Backhuys Publishers, Wageningen, pp 185–191

  • Wechter WP, Levi A, Harris KR, Davis AR, Fei ZJ, Katzir N, Giovannoni JJ, Salman A, Hernandez A, Thimmapuram J, Tadmor V, Portnoy V, Trebitsh T (2008) Gene expression in developing watermelon fruit. BMC-Genomics 9:275–282

    Article  PubMed  Google Scholar 

  • Wechter WP, Kousik C, McMillan M, Levi A (2012) Identification of resistance to Fusarium oxysporum f. sp. niveum race 2 in Citrullus lanatus var. citroides Plant Introductions. HortScience 47:334–338

    Google Scholar 

  • Wehner TC (2008) Watermelon. In: Prohens J, Nuez F (eds) Handbook of plant breeding; vegetables I: Asteraceae, Brassicaceae, Chenopodiaceae, and Cucurbitaceae. Springer Science + Business LLC, New York, pp 381–418

  • Whitaker TW, Bemis WB (1976) Cucurbits. In: Simmonds NW (ed) Evolution of crop plants. Longman, London, pp 64–69

    Google Scholar 

  • Whitaker TW, Davis GN (1962) Cucurbits: botany, cultivation, and utilization. Interscience Publishers, Inc., New York

    Google Scholar 

Download references

Acknowledgment

We thank Laura Massey and Richard Crawford for their excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amnon Levi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levi, A., Thies, J.A., Wechter, W.P. et al. High frequency oligonucleotides: targeting active gene (HFO-TAG) markers revealed wide genetic diversity among Citrullus spp. accessions useful for enhancing disease or pest resistance in watermelon cultivars. Genet Resour Crop Evol 60, 427–440 (2013). https://doi.org/10.1007/s10722-012-9845-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-012-9845-3

Keywords

Navigation