Skip to main content
Log in

The original features of rice (Oryza sativa L.) genetic diversity and the importance of within-variety diversity in the highlands of Madagascar build a strong case for in situ conservation

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

In situ conservation of crop genetic resources is widely recommended but, as yet, no methods have been developed to rank the genetic entities to preserve and the social organisations to involve. The highlands of Madagascar have been identified as a key site for rice, Oryza sativa, genetic diversity. To define conservation strategies, we performed multidisciplinary analysis of rice genetic diversity and factors shaping its distribution in the target region. Along with the indica and japonica rice subspecies of O. sativa, we confirmed the presence of an atypical rice group with a preferential habitat of 1,250–1,750 m. Spatial distribution of genetic diversity was uneven. The most determining factor of this unevenness was the altitude authorising or not the presence of different rice cropping systems and the associated types of varieties. Village and individual farmer’s wealth also had a determining role on the amount of rice diversity they hosted. While molecular variance between villages in a given interval of altitude represented 16 % of the total variance, within-village variance represented more than 75 % of the total, and within-farm variance 70 % of within-village variance. This hierarchical distribution of molecular variance suggests that a small number of samples per scale (altitude interval, village and farm) could allow to capture most of the genetic diversity observed. However, within-variety diversity was also important making ex situ conservation strategies impractical and costly. Implications of the within-variety diversity are discussed in terms of adaptive advantages, evolutionary processes, and need for in situ conservation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahmadi N (2004) Upland rice for the highlands: new varieties and sustainable cropping systems to face food security. Promising prospects for the global challenges of rice production the world will face in the coming years. Int Rice Commiss Newslett 53:58–65

    Google Scholar 

  • Ahmadi N, Becquer T, Larroque C, Arnaud M (1988) Variabilité génétique du riz (Oryza sativa L.) à Madagascar. L’agronomie tropicale 43:209–221

    Google Scholar 

  • Ahmadi N, Glaszmann JC, Rabary E (1991) Traditional highland rices originating from intersubspecific recombination in Madagascar. In: IRRI International Rice Research Institute. Rice genetics II. IRRI, Los Banos, Philippines, pp 67–79

  • Altieri MA, Merrick LC (1987) In situ conservation of crop genetic resources through maintenance of traditional farming systems. Econ Bot 41:86–96

    Article  Google Scholar 

  • Barry MB, Pham JL, Courtois B, Billo C, Ahmadi N (2007a) Rice genetic diversity at farm and village levels and genetic structure of landrace reveal need for in situ conservation. Genet Resour Crop Evol 54:1675–1690

    Article  CAS  Google Scholar 

  • Barry MB, Pham JL, Noyer JL, Billo C, Courtois B, Ahmadi N (2007b) Genetic diversity of the two cultivated rice species (O. sativa and O. glaberrima) in Maritime Guinea. Evidences for inter-specific recombination. Euphytica 154:127–137

    Article  CAS  Google Scholar 

  • Bellon MR (1996) The dynamics of crop infraspecific diversity: a conceptual framework at the farmer level. Econ Bot 50:26–39

    Article  Google Scholar 

  • Bellon MR (1997) On-farm conservation as a process: an analysis of its components. In: Sperling L, Leovinsohn M (eds) Proceedings of the workshop using diversity enhancement and maintaining genetic resources on-farm. 19–21 June 1995. New Delhi, India, pp 22–38

  • Blanc-Pamard C, Rakoto-ramiarantsoa H (1991) Les bas-fonds des hautes terres centrales de Madagascar: construction et gestion paysannes. In: Raunet M (ed) Proceedings of Bas-fonds et riziculture symposium. 9–14 December 1991, Montpellier, France, pp 31–48

  • Boiteau P (1977) Les protomalgaches et la domestication des plantes. Bull Acad Malgache 55(1–2):21–26

    Google Scholar 

  • Brush SB (1991) A farmer-based approach to conservating crop germplasm. Econ Bot 45:153–165

    Article  Google Scholar 

  • Brush SB (2000) The issues of in situ conservation of crop genetic resources. In: Brush SB (ed) Genes in the field: on-farm conservation of crop diversity. IPGRI-IDRC-Lewis Publishers, Boca Raton, pp 3–28

    Google Scholar 

  • Brush SB, Perales HR (2007) A maize landscape: Ethnicity and agro-biodiversity in Chiapas Mexico. Agric Ecosyst Environ 121:211–221

    Article  Google Scholar 

  • Chabanne A, Razakaminarmanana M (1997) La climatologie d’altitude à Madagascar. In: Poisson C, Rakotoarisoa J (eds) Proceeding of Séminaire riziculture d’altitude, 1–5 April 1996. Cirad, France, pp 55–62

    Google Scholar 

  • Cox T, Wood D (1999) The nature and role of crop biodiversity. In: Lenne W (ed) Agrobiodiversity: characterization, utilization and management. Cabi Publishing, London, pp 35–37

    Google Scholar 

  • Darwin C (1852) The origin of species, 6th edn, 1872. Reprinted 1962 Macmillan, New York

  • Dez J (1967) Le Vakinakaratra, esquisse d’une histoire régionale. Bulletin de Madagascar 256:657–701

    Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  PubMed  CAS  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: An integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50

    CAS  Google Scholar 

  • FAO (1996) Rapport on the state of phylogenetic resources in the world. FAO, Rome

    Google Scholar 

  • Finckh MR, Gacek ES, Goyeau H, Lannou C, Merz U, Mundt CC, Munk L, Nadziak J, Newton AC, De Vallavieille-Pope C, Wolfe MS (2000) Cereal variety and species mixtures in practice, with emphasis on disease resistance. Agronomie 20:813–837

    Article  Google Scholar 

  • Glaszmann JC (1987) Isozymes and classification of Asian rice varieties. Theor Appl Genet 74:21–30

    Article  CAS  Google Scholar 

  • Greene SL, Gritsenko M, Vandemark G, Johnson RC (2002) Predicting germplasm differentiation using GIS-derived information. In: Engels J et al. (ed) Proceeding of the conference managing plant genetic diversity. 12–16 June 2000, Kuala Lumpur, Malaysia. Cabi Publishing, London, pp 405–412

  • Harlan JR (1965) The possible role of weed races in the evolution of cultivated plants. Euphytica 14:173–176

    Article  Google Scholar 

  • Jarvis DI, Hodgkin T (2000) Farmer decision making and genetic diversity: linking multidisciplinary research to implementation on-farm. In: Brush SB (ed) Genes in the field: on-farm conservation of crop diversity. IPGRI-IDRC-Lewis Publishers, Boca Raton, pp 227–243

    Google Scholar 

  • Jarvis D, Sthapit B, Sears L (2000) Conserving agricultural biodiversity in situ: a scientific basis for sustainable agriculture. International Plant Genetic Resources Institute, Rome

    Google Scholar 

  • Jaunet T, Notteghem JL (1997) Caractérisation de Pseudomonas fuscovaginae et de son interaction avec le riz. In: Poisson C, Rakotoarisoa J (eds) Proceeding of Séminaire riziculture d’altitude, 1–5 April 1996. Cirad, France, pp 93–104

    Google Scholar 

  • Kotowska AM, Cahill JF, Keddie BA (2010) Plant genetic diversity yields increased plant productivity and herbivore performance. J Ecol 98:237–245

    Article  Google Scholar 

  • Luce C, Noyer JL, Tharreau D, Ahmadi N, Feyt H (2001) The use of microsatellite markers to examine the diversity of the genetic resources of rice (Oryza sativa) adapted to European conditions. Acta Hort 546:221–235

    CAS  Google Scholar 

  • Mather KA, Molina J, Flowers JM, Rubinstein S, Rauh BL, Lawthon-Rauh A, Caicedo AL, McNally KL, Purugganan MD (2010) Migration, isolation and hybridization in island crop populations: the case of Madagascar rice. Mol Ecol 19(4):892–4905

    Google Scholar 

  • McKey D, Emperaire L, Elias M, Pinton F, Robert T, Desmouliere S, Rival L (2001) Gestions locales et dynamiques régionales de la diversité variétale du manioc en Amazonie. Genet Sci Evol 3:465–490

    Google Scholar 

  • Miezan K, Ghesquiere A (1986) Genetic structure of African traditional rice cultivar. In: Khush G (ed) Proceeding of rice genetics symposium. 14–16 October, IRRI, Los Banos, Philippines

  • Morishima H (1989) Intra-population genetic diversity in landrace of rice. In: Breeding research: the key to the survival of the earth, Proceeding of the 6th international SABRAO congress. 21–25 August, Tsukuba, pp 125–137

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Oka HI (1983) The indica-japonica differentiation of rice cultivars. A review. In: Proceedings of the 4th international SABRAO congress. 4–8 May 1981, Kuala Lumpur, pp 117–128

  • Peltier M (1970) Les dénominations variétales du riz cultivé (Oryza sativa L.) à Madagascar. Journal d’Agriculture tropicale et de Botanique Appliquée 27:469–486

    Google Scholar 

  • Perrier X, Jacquemoud-Collet JP (2006) DARwin software. http://darwin.cirad.fr/darwin

  • Perrier X, Flori A, Bonnot F (2003) Data analysis methods. In: Hamon P, Seguin M, Perrier X, Glaszmann JC (eds) Genetic diversity of cultivated tropical plants. Science Publishers, Montpellier, pp 43–76

    Google Scholar 

  • Pham JL, Toll J, Morin S (2000) Approach to and perspective of in situ conservation on-farm by the international rice genebank. In: Almekinders C, de Boef W (eds) Encouraging diversity. The conservation and development of plant genetic resources. IT Publications, London, pp 112–117

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Rabary E, Noyer JL, Benyayer M, Arnaud M, Glaszmann JC (1989) Variabilité génétique du riz (Oryza sativa L.) à Madagascar: origine de types nouveaux. L’agronomie tropicale 44:305–312

    Google Scholar 

  • Radanielina T (2010) Diversité génétique du riz (Oryza sativa L.) dans la région de Vakinaankaratra, Madagascar. Structuration, distribution éco-géographique et gestion in situ. PhD thesis, Agro Paris Tech No. 2010/AGPT/0093. Paris, France

  • Rana RB, Garforth JC, Sthapit BR, Subedi A, Chaudhary P, Jarvis DI (2007) On-farm management of rice genetic diversity: understanding farmers’ knowledge on rice ecosystems and varietal deployment. Plant Genet Resour Newslett 152:58–64

    Google Scholar 

  • Risterucci AM, Grivet L, N’Goran JAK, Pieretti I, Flament MH, Lanaud C (2000) A high-density linkage map of Theobroma cacao L. Theor Appl Genet 101:948–955

    Article  CAS  Google Scholar 

  • Schneider S, Roessli D, Excoffier L (2000) Arlequin: a software for population genetics data analysis. Genetics and Biometry Laboratory, Department of Anthropology, University of Geneva, Geneva

    Google Scholar 

  • Thomson M, Septiningsih E, Suwardjo F, Santoso T, Silitonga T, McCouch S (2007) Genetic diversity analysis of traditional and improved Indonesian rice (Oryza sativa L.) germplasm using microsatellite markers. Theor Appl Genet 114:559–568

    Article  PubMed  CAS  Google Scholar 

  • Vaughan DA, Chang TT (1992) In situ conservation of rice genetic resources. Econ Bot 46:368–383

    Article  Google Scholar 

  • Wright S (1931) Evolution in Mendelian populations. Genetics 16:97–159

    PubMed  CAS  Google Scholar 

  • Wright S (1978) Evolution and the genetics of populations. Variability within and among natural populations, vol 4. University of Chicago Press, Chicago

    Google Scholar 

Download references

Acknowledgments

We would like to thank the 1,049 farmers of the 32 villages in Vakinankaratra region, Madagascar, for their cooperation during the surveys and for kindly providing samples of their rice varieties. We would also like to thank Georges Serpantié for supervision of the preliminary surveys, Brigitte Courtois and Aude Baduel for critical reading of the manuscript. This work was funded by the French Embassy in Madagascar, the Centre National de la Recherche Appliquée au Développement Rural (Fofifa, Madagascar) and the Centre de Coopération International en Recherche Agronomique pour le Développement (CIRAD, France).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nourollah Ahmadi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 67 kb)

Supplementary material 2 (PDF 369 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Radanielina, T., Ramanantsoanirina, A., Raboin, LM. et al. The original features of rice (Oryza sativa L.) genetic diversity and the importance of within-variety diversity in the highlands of Madagascar build a strong case for in situ conservation. Genet Resour Crop Evol 60, 311–323 (2013). https://doi.org/10.1007/s10722-012-9837-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-012-9837-3

Keywords

Navigation