Skip to main content
Log in

Variation among tree tomato (Solanum betaceum Cav.) accessions from different cultivar groups: implications for conservation of genetic resources and breeding

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Tree tomato (Solanum betaceum, Solanaceae) is a neglected small tree native to the Andean region used for its edible and juicy fruits. We have elaborated a list of 39 quantitative morphological descriptors for different plant parts (plant architecture, leaf, inflorescence and flower, infructescence and fruit, and seed) and have used them to characterize 24 accessions of tree tomato from different origins corresponding to five cultivar groups: orange, orange pointed, purple, red, and red conical. Several parameters, including range, maximum/minimum value ratio, standard deviation, coefficient of variation, and broad-sense heritability, as well as analyses of variance, have been used to validate the utility of the descriptors, which have proved useful for the characterization of this crop. Significant (P < 0.05) differences among accessions were found for the descriptors we evaluated, with the exception of three flower-size descriptors. Fruit and infructescence traits and seed number displayed the most variation and greatest heritability values. Considerable variation was found within each cultivar group for many traits. Many differences were found at the morphological level between the odd, red conical group, which includes a single accession with small fruits containing very few seeds, and all other cultivar groups. Ranges of variation among these other groups overlap for most of the descriptors studied, although the orange and red cultivar groups are the most distinct. Most of the significant correlations found among traits connect descriptors from the same part of the plant. Multivariate cluster and principal component analyses separated the tree tomato accessions into several morphologically similar groups. With the exception of single accession clusters, the rest of clusters contain accessions of several cultivar groups, reflecting considerable variation within cultivar groups, as well as (with the exception of the red conical group) a low degree of morphological differentiation among them. The descriptors we developed and the results obtained are relevant for the conservation and breeding of this promising fruit crop.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson GJ, Jansen RK, Kim Y (1996) The origin and relationships of the pepino, Solanum muricatum (Solanaceae): DNA restriction fragment evidence. Econ Bot 50:369–380

    Article  Google Scholar 

  • Bernhardt P (1996) Anther adaptation in animal pollination. In: D′Arcy WG, Keating RC (eds) The anther: form, function and phylogeny. Cambridge University Press, New York, pp 192–220

    Google Scholar 

  • Bohs L (1989a) Ethnobotany of the genus Cyphomandra (Solanaceae). Econ Bot 43:143–163

    Article  Google Scholar 

  • Bohs L (1989b) Solanum allophyllum (Miers) Standl. and the generic delimitation of Cyphomandra and Solanum (Solanaceae). Ann Mo Bot Gard 76:1129–1140

    Article  Google Scholar 

  • Bohs L (1991) Crossing studies in Cyphomandra (Solanaceae) and their systematic and evolutionary significance. Am J Bot 78:1683–1693

    Article  Google Scholar 

  • Bohs L (1994) Cyphomandra (Solanaceae). The New York Botanical Garden, Bronx

    Google Scholar 

  • Bohs L (1995) Transfer of Cyphomandra (Solanaceae) and its species to Solanum. Taxon 44:583–587

    Article  Google Scholar 

  • Bohs L (2001) A revision of Solanum section Cyphomandropsis (Solanaceae). Syst Bot Monogr 61:1–85

    Article  Google Scholar 

  • Bohs L (2007) Phylogeny of the Cyphomandra clade of the genus Solanum (Solanaceae) based on ITS sequence data. Taxon 56:1012–1026

    Article  Google Scholar 

  • Bohs L, Nelson A (1997) Solanum maternum (Solanaceae), a new Bolivian relative of the tree tomato. Novon 7:341–345

    Article  Google Scholar 

  • Bohs L, Olmstead RG (1997) Phylogenetic relationships in Solanum (Solanaceae) based on ndhF sequences. Syst Bot 22:5–17

    Article  Google Scholar 

  • Boyes S, Strübi P (1997) Organic acid and sugar composition of three New Zeland grown tamarillo varieties (Solanum betaceum (Cav.)). N Z J Crop Hortic Sci 25:79–83

    Article  CAS  Google Scholar 

  • Brewer MT, Moyseenko JB, Monforte AJ, van der Knaap E (2007) Morphological variation in tomato: a comprehensive study of quantitative trait loci controlling fruit shape and development. J Exp Bot 58:1339–1349

    Article  PubMed  CAS  Google Scholar 

  • Cooper M, Podlich DW, Micallef KP, Smith OS, Jensen NM, Chapman SC, Kruger NL (2002) Complexity, quantitative traits and plant breeding: a role for simulation modelling in the genetic improvement of crops. In: Kang MS (ed) Quantitative genetics, genomics and plant breeding. CABI Publishing, Oxon, pp 143–166

    Google Scholar 

  • Dabholkar AR (1992) Elements of biometrical genetics. Concept Publishing Co., New Delhi

    Google Scholar 

  • Day Rubenstein K, Smale M, Widrlechner MP (2006) Demand for genetic resources and the U.S. National Plant Germplasm System. Crop Sci 46:1021–1031

    Article  Google Scholar 

  • de Vicente MC, Guzmán FA, Engels J, Rao VR (2006) Genetic characterization and its use in decision making for the conservation of crop germplasm. In: Ruane J, Sonnino A (eds) The role of biotechnology in exploring and protecting agricultural genetic resources. Food and Agriculture Organization, Rome, pp 121–128

    Google Scholar 

  • Dudley JW, Moll RH (1969) Interpretation and use of estimates of heritability and genetic variances in plant breeding. Crop Sci 9:257–262

    Article  Google Scholar 

  • El-Zeftawi BM, Brohier L, Dooley L, Goubran FH, Holmes R, Scott B (1988) Some maturity indices for tamarillo and pepino fruits. J Hortic Sci 63:163–169

    Google Scholar 

  • Enciso-Rodríguez F, Martínez R, Lobo M, Barrero LS (2010) Genetic variation in the Solanaceae fruit bearing species lulo and tree tomato revealed by Conserved Ortholog (COSII) markers. Genet Mol Biol 33:271–278

    Article  PubMed  Google Scholar 

  • Fischer G (2000) Ecophysiological aspects of fruit growing in tropical highlands. Acta Hortic 531:91–98

    Google Scholar 

  • Fos M, Nuez F, García-Martínez JL (2000) The gene pat-2, which induces natural parthenocarpy, alters the giberellin content in unpollinated tomato ovaries. Plant Physiol 122:471–479

    Article  PubMed  CAS  Google Scholar 

  • Gorguet B, van Heusden AW, Lindhout P (2005) Parthenocarpic fruit development in tomato. Plant Biol 7:131–139

    Article  PubMed  CAS  Google Scholar 

  • Hammer K, Arrowsmith N, Gladis T (2003) Agrobiodiversity with emphasis on plant genetic resources. Naturwissenschaften 90:241–250

    Article  PubMed  CAS  Google Scholar 

  • Hernández-Bermejo JE, León J (1992) Cultivos marginados: otra perspectiva de 1492. Food Agric Organ, Rome

    Google Scholar 

  • Hochberg Y (1988) A sharper Bonferroni procedure for multiple tests of significance. Biometrika 75:800–803

    Article  Google Scholar 

  • Holdridge LR (1967) Life zone ecology. Tropical Science Center, San José

    Google Scholar 

  • Holland JB, Nyquist WE, Cervantes-Martínez CT (2003) Estimating and interpreting heritability for plant breeding: an update. Plant Breed Rev 22:9–111

    Google Scholar 

  • Huamán Z, Spooner DM (2002) Reclassification of landrace populations of cultivated potatoes (Solanum sect. Petota). Am J Bot 89:947–965

    Article  PubMed  Google Scholar 

  • IBPGR (1990) Descriptors for eggplant. International Board for Plant Genetic Resources, Rome

    Google Scholar 

  • Ikeda T, Yakushiji H, Oda M, Taji A, Imada S (1999) Growth dependence of ovaries of facultatively parthenocarpic eggplant in vitro on indole-3-acetic acid content. Sci Hortic 79:143–150

    Article  CAS  Google Scholar 

  • IPGRI (1996) Descriptors for tomato (Lycopersicom spp.). International Plant Genetic Resources Institute, Rome

    Google Scholar 

  • IPGRI (2004) Descriptors for pepino (Solanum muricatum). International Plant Genetic Resources Institute, Rome

    Google Scholar 

  • Jackson D, Looney N (1999) Producing and marketing quality fruit. In: Jackson D, Looney N (eds) Temperate and subtropical fruit production. CABI, Oxon, pp 85–108

    Google Scholar 

  • Kwon YS, Park SG, Yi SI (2009) Assessment of genetic variation among commercial tomato (Solanum lycopersicum L.) varieties using SSR markers and morphological characteristics. Genes Genomics 31:1–10

    Article  CAS  Google Scholar 

  • Lester RN, Hawkes JG (2001) Solanaceae. In: Hanelt P and Institute of Plant Genetics and Crop Reesearch (eds) Mansfeld’s encyclopedia of agricultural and horticultural crops (except ornamentals), vol 4. Springer, Berlin, pp 1790–1856

  • Lewis DH, Considine JA (1999) Pollination and fruit set in the tamarillo (Cyphomandra betacea (Cav.) Sendt.) 1. Floral biology. N Z J Crop Hortic Sci 27:101–112

    Article  Google Scholar 

  • Mantel N (1967) The detection of disease clustering and generalized regression approach. Cancer Res 27:209–220

    PubMed  CAS  Google Scholar 

  • Mertz C, Gancel AL, Gunata Z, Alter P, Dhuique-Mayer C, Vaillant F, Pérez AM, Ruales J, Brat P (2009) Phenolic compounds, carotenoids and antioxidant activity of three tropical fruits. J Food Compost Anal 22:381–387

    Article  CAS  Google Scholar 

  • Mohammadi SA, Prassana BM (2003) Analysis of genetic diversity in crop plants—salient statistical tools and considerations. Crop Sci 43:1235–1248

    Article  Google Scholar 

  • Muñoz-Falcón J, Prohens J, Vilanova S, Nuez F (2008) Characterization, diversity, and relationships of the Spanish striped (Listada) eggplants: a model for the enhancement and protection of local heirlooms. Euphytica 164:405–419

    Article  Google Scholar 

  • Mwithiga G, Mukolwe MI, Shitanda D, Karanja PN (2007) Evaluation of the effect of ripening on the sensory quality and properties of tamarillo (Cyphomandra betaceae) fruits. J Food Eng 79:117–123

    Article  Google Scholar 

  • National Research Council (1989) Lost crops of the incas: little-known plants of the andes with promise for worldwide cultivation. National Academy Press, Washington

    Google Scholar 

  • Nunome T, Ishiguro K, Yoshida T, Hirai M (2001) Mapping of fruit shape and color development traits in eggplant (Solanum melongena L.) based on RAPD and AFLP markers. Breed Sci 51:19–26

    Article  CAS  Google Scholar 

  • Nyquist WE (1991) Estimation of heritability and prediction of selection response in plant populations. Crit Rev Plant Sci 10:235–322

    Article  Google Scholar 

  • Pileri AM (1989) Il tamarillo. Riv Frutticultura 51(11):67–70

    Google Scholar 

  • Pringle GJ, Murray BG (1991a) Interspecific hybridisation involving the tamarillo, Cyphomandra betacea (Cav.) Sendt. (Solanaceae). N Z J Crop Hortic Sci 19:103–111

    Google Scholar 

  • Pringle GJ, Murray BG (1991b) Reproductive biology of the tamarillo, Cyphomandra betacea (Cav.) Sendt. (Solanaceae), and some wild relatives. N Z J Crop Hortic Sci 19:263–273

    Google Scholar 

  • Pringle GJ, Murray BG (1992a) Polyploidy and aneuploidy in the tamarillo, Cyphomandra betacea (Cav.) Sendt. (Solanaceae) I. Spontaneous polyploidy and features of the euploids. Plant Breed 108:132–138

    Article  Google Scholar 

  • Pringle GJ, Murray BG (1992b) Polyploidy and aneuploidy in the tamarillo, Cyphomandra betacea (Cav.) Sendt. (Solanaceae) II. Induction of tetraploidy, interploidy crosses and aneuploidy. Plant Breed 108:139–148

    Article  Google Scholar 

  • Prohens J, Nuez F (2000) The tamarillo (Cyphomandra betacea): a review of a promising small crop. Small Fruits Rev 1(2):43–68

    Article  Google Scholar 

  • Prohens J, Ruiz JJ, Nuez F (1996) Advancing the tamarillo harvest by induced postharvest ripening. HortScience 31:109–111

    Google Scholar 

  • Prohens J, Ruiz JJ, Nuez F (1998) The inheritance of parthenocarpy and associated traits in pepino. J Am Soc Hortic Sci 123:376–380

    Google Scholar 

  • Prohens J, Rodríguez-Burruezo A, Nuez F (2004) Breeding Andean Solanaceae fruit crops for adaptation to subtropical climates. Acta Hortic 662:129–137

    Google Scholar 

  • Prohens J, Blanca J, Nuez F (2005) Morphological and molecular variation in a collection of eggplants from a secondary center of diversity: Implications for conservation and breeding. J Am Soc Hortic Sci 130:54–63

    CAS  Google Scholar 

  • Ranc L, Muños S, Santoni S, Causse M (2008) A clarified position for Solanum lycopersicum var. cerasiforme in the evolutionary history of tomatoes (Solanaceae). BMC Plant Biol 8:130

    Article  PubMed  Google Scholar 

  • Rodríguez-Burruezo A, Prohens J, Nuez F (2002) Genetic analysis of quantitative traits in pepino (Solanum muricatum) in two growing seasons. J Am Soc Hortic Sci 127:271–278

    Google Scholar 

  • Romero-Rodríguez MA, Vázquez-Oderiz ML, López-Hernández J, Simal-Lozano J (1994) Composition of babaco, feijoa, pasion-fruit and tamarillo produced in Galicia (NW Spain). Food Chem 49:251–255

    Article  Google Scholar 

  • Roos JJ, Reid JB, Weller JL, Symons GM (2005) Shoot architecture I: regulation of stem length. In: Turnbull CGN (ed) Plant architecture and its manipulation. Blackwell Publishing, Oxford, pp 57–91

    Google Scholar 

  • Schmid M, Davison TS, Henz SR, Pape UJ, Demar M, Vingron M, Schölkopf B, Weigel D, Lohmann JU (2005) A gene expression map of Arabidopsis thaliana development. Nat Genet 37:501–506

    Article  PubMed  CAS  Google Scholar 

  • Silvertown JW (1981) Seed size, life span and germination date as coadadpted features of plant life history. Am Nat 118:860–864

    Article  Google Scholar 

  • Sneath PHA, Sokal RR (1973) Numerical taxonomy. WH Freeman, San Francisco

    Google Scholar 

  • Spooner DM, Hetterscheid WLA, van den Berg RG, Brandenburg WA (2003) Plant nomenclature and taxonomy—an horticultural and agronomic perspective. Hortic Rev 28:1–60

    Google Scholar 

  • Sulmon C, Gouesbet G, Couee I, Cabello-Hurtado F, Cavalier A, Penno C, Zaka R, Bechtold N, Thomas D, Amrani El (2006) The pleiotropic Arabidopsis frd mutation with altered coordination of chloroplast biogenesis, cell size and differentiation, organ size and number. Gene 382:88–99

    Article  PubMed  CAS  Google Scholar 

  • Tcherkez G (2004) Flowers: evolution of the floral architecture of angiosperms. Science Publishers, Enfield

    Google Scholar 

  • Turnbull CGN (2005) Shoot architecture II: control of branching. In: Turnbull CGN (ed) Plant architecture and its manipulation. Blackwell Publishing, Oxford, pp 92–120

    Google Scholar 

  • Vasco C, Avila J, Ruales J, Svanberg U, Kamal-Eldin A (2009) Physical and chemical characteristics of golden-yellow and purple-red varieties of tamarillo fruit (Solanum betaceum Cav.). Int J Food Sci Nutr 60:278–288

    Article  PubMed  CAS  Google Scholar 

  • Weese TL, Bohs L (2007) A three-gene phylogeny of the genus Solanum (Solanaceae). Syst Bot 32:445–463

    Article  Google Scholar 

  • Wernsman EA, Rufty RC (1987) Tobacco. In: Fehr W (ed) Principles of cultivar development, vol 2. Macmillan Publ, New York, pp 669–698

    Google Scholar 

  • Wricke G, Weber WE (1986) Quantitative genetics and selection in plant breeding. Walter de Gruyter, Berlin

    Book  Google Scholar 

  • Zohary D, Spiegel-Roy P (1975) Beginning of fruit growing in the Old World. Science 187:319–327

    Article  PubMed  CAS  Google Scholar 

  • Zygier S, Chaim AB, Efrati A, Kaluzky G, Borvsky Y, Paran I (2005) QTLs mapping for fruit size and shape in chromosomes 2 and 4 in pepper and a comparison of the pepper QTL map with that of tomato. Theor Appl Genet 111:437–445

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially financed by the Ministerio de Ciencia e Innovación (RF2008-00008-00-00) and by the Secretaria Nacional de Ciencia y Tecnología from Ecuador (SENACYT). We are grateful to the curators of the genebanks that provided the germplasm needed to carry out this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaime Prohens.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 156 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Acosta-Quezada, P.G., Martínez-Laborde, J.B. & Prohens, J. Variation among tree tomato (Solanum betaceum Cav.) accessions from different cultivar groups: implications for conservation of genetic resources and breeding. Genet Resour Crop Evol 58, 943–960 (2011). https://doi.org/10.1007/s10722-010-9634-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-010-9634-9

Keywords

Navigation