Skip to main content
Log in

Identification of Aegilops L. species and Triticum aestivum L. based on chloroplast DNA

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

The genus Aegilops L. is a very important genetic resource for the breeding of bread wheat Triticum aestivum. Therefore, an accurate and easy identification of Aegilops species is required. Traditionally, identification of Aegilops species has relied heavily on morphological characters. These characters, however, are either not variable enough among Aegilops species or too plastic to be used for identification at the species level. Molecular markers that are more stable within species, therefore, could be the alternative strategy towards an accurate identification. Since the chloroplast DNA has a lower level of evolution compared to the nuclear genome, an attempt was made in this study to investigate polymorphism in the chloroplast DNA among 21 Aegilops species (including Ae. mutica that is now known as Amblyopyrum muticum) and between the latter and T. aestivum to generate markers for the diagnosis of all targeted species. Cleaved amplified polymorphic sequence (CAPS) applied on 22 coding and non-coding chloroplast regions using 80 endonucleases and sequencing of two of those regions revealed little polymorphism between T. aestivum and the various Aegilops species examined and to a less extent was the variation among Aegilops species. Polymorphism observed among species analysed allowed the discrimination of T. aestivum and 12 Aegilops species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Arnold ML, Robinson JJ, Buckner CM et al. (1992) Pollen dispersal and interspecific gene flow in Louisiana irises. Heredity 68:399–404

    Google Scholar 

  • Badaeva ED, Friebe B, Gill BS (1996a) Genome differentiation in Aegilops. 1. Distribution of highly repetitive DNA sequences on chromosomes of diploid species. Genome 39(2):293–306

    Article  PubMed  CAS  Google Scholar 

  • Badaeva ED, Friebe B, Gill BS (1996b) Genome differentiation in Aegilops. 2. Physical mapping of 5S and 18S–26S ribosomal RNA gene families in diploid species. Genome 39(6):1150–1158

    Article  PubMed  CAS  Google Scholar 

  • Bahrman N, Cardin ML, Seguin M et al. (1988a) Variability of 3 cytoplasmically encoded proteins in the Triticum genus. Heredity 60:87–90

    Article  CAS  Google Scholar 

  • Bahrman N, Zivy M, Thiellement H (1988b) Genetic-relationships in the Sitopsis section of Triticum and the origin of the B-genome of polyploid wheats. Heredity 61:473–480

    Article  Google Scholar 

  • Bowman CM, Bonnard G, Dyer TA (1983) Chloroplast DNA variation between species of Triticum and Aegilops – location of the variation on the chloroplast genome and its relevance to the inheritance and classification of the cytoplasm. Theor Appl Genet 65(3):247–262

    Article  CAS  Google Scholar 

  • Boyko EV, Gill KS, Mickelson-Young L et al. (1999) A high-density genetic linkage map of Aegilops tauschii, the D-genome progenitor of bread wheat. Theor Appl Genet 99(1–2):16–26

    Article  CAS  Google Scholar 

  • Chen K, Graym JC, Wildman SG (1975) Fraction I protein and the origin of polyploid wheats. Science 190:1304–1306

    CAS  Google Scholar 

  • Ciaffi M, Dominici L, Umana E et al. (2000) Restriction Fragment Length Polymorphism (RFLP) for protein disulfide isomerase (PDI) gene sequences in Triticum and Aegilops species. Theor Appl Genet 101(1–2):220–226

    Article  CAS  Google Scholar 

  • Clayton WD, Renvoize SA (1986) Genera graminum: grasses of the world. Royal Botanic Garden, Kew, London, UK

    Google Scholar 

  • Dhaliwal HS, HarjitSingh, William M (2002) Transfer of rust resistance from Aegilops ovata into bread wheat (Triticum aestivum L.) and molecular characterisation of resistant derivatives. Euphytica 126(2):153–159

    Article  CAS  Google Scholar 

  • Dvorak J (1990) Evolution of multigene families: the ribosomal RNA loci of wheat and related species. In: Brown AHD, Clegg MT, Kahler AL, Weir BS (eds) Plant population genetics, breeding, and genetic resources. Sinauer Associates, Sunderland, pp 83–97

    Google Scholar 

  • Dvorak J, Zhang HB (1992) Application of molecular tools for study of the phylogeny of diploid and polyploid taxa in Triticeae. Hereditas 116(1–2):37–42

    Article  Google Scholar 

  • Dvorak J, Luo MC, Yang ZL, Zhang HB (1998) The structure of Aegilops tauschii genepool and the evolution of hexaploid wheat. Theor Appl Genet 97(4):657–670

    Article  CAS  Google Scholar 

  • El Mousadik A, Petit RJ (1996) Chloroplast DNA phylogeography of the argan tree of Morocco. Mol Ecol 5(4):547–555

    Article  PubMed  CAS  Google Scholar 

  • Feldman M (1978) New evidence on the origin of the B-genome of wheat. In: Proceedings of the 5th international wheat genetics symposium. Kapoor Art Press, New Delhi, vol 1, pp 120–132

  • Gielly L, Taberlet P (1994) The use of chloroplast DNA to resolve plant phylogenies – noncoding versus rbcL sequences. Mol Biol Evol 11(5):769–777

    PubMed  CAS  Google Scholar 

  • Giorgi D, D’Ovidio R, Tanzarella OA et al. (2002) RFLP analysis of Aegilops species belonging to the Sitopsis section. Genet Resour Crop Evol 49(2):145–151

    Article  Google Scholar 

  • Giorgi D, D’Ovidio R, Tanzarella OA et al. (2003) Isolation and characterization of S genome specific sequences from Aegilops sect. Sitopsis species. Genome 46(3):478–489

    Article  PubMed  CAS  Google Scholar 

  • Graur D, Bogher M, Breiman A (1989). Restriction endonuclease profiles of mitochondrial-DNA and the origin of the B-genome of bread wheat, Triticum-aestivum. Heredity 62:335–342

    Article  CAS  Google Scholar 

  • Guadagnuolo R, Bianchi D, Felber F (2001) Specific genetic markers for wheat, spelt, and four wild relatives: comparison of isozymes, RAPDs, and wheat microsatellites. Genome 44(4):610–621

    Article  PubMed  CAS  Google Scholar 

  • Haider N (2003) Development and use of universal primers in plants. Ph.D. Thesis, The University of Reading, UK

  • Hilu KW (1987) Chloroplast DNA in the systematics and evolution of the Poaceae. In: Soderstrom TR, Hilu KW, Campbell CS, Barkworth ME (eds) Grass systematics and evolution: an international symposium held at the Smithsonian Institution. Smithsonian Institution Press, Washington

    Google Scholar 

  • Huang S, Sirikhachornkit A, Su X et al. (2002) Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploid wheat. Proc Natl Acad Sci USA 99(12):8133–8138

    Article  PubMed  CAS  Google Scholar 

  • Jaaska V (1978) NADP-dependent aeomatic alcohol dehydrogenase in polyploid wheats and their diploid relatives: on the origin and phylogeny of polyploid wheats. Theor Appl Genet 53:209–217

    Article  CAS  Google Scholar 

  • Khlestkina EK, Salina EA (2001) Genome-specific markers of tetraploid wheats and their putative diploid progenitor species. Plant Breed 120(3):227–232

    Article  CAS  Google Scholar 

  • Li DY, Zhang XY, Yang J et al. (2000) Genetic relationship and genomic in situ hybridization analysis of the three genomes in Triticum aestivum. ACTA Bot Sin 42(9):957–964

    CAS  Google Scholar 

  • McCourt RM, Karol KG, Casanova MT et al. (1999) Monophyly of genera and species of Characeae based on rbcL sequences, with special reference to Australian and European Lychnothamnus barbatus (Characeae: Charophyceae). Austr J Bot 47(3):361–369

    Article  CAS  Google Scholar 

  • Mendlinger S, Zohary D (1995) The extent and structure of genetic-variation in species of the Sitopsis group of Aegilops. Heredity 74:616–627 (Part 6 Jun)

    Article  Google Scholar 

  • Miyashita NT, Mori N, Tsunewaki K (1994) Molecular variation in chloroplast DNA regions in ancestral species of wheat. Genetics 137(3):883–889

    PubMed  CAS  Google Scholar 

  • Mori N, Liu YG, Tsunewaki K (1995) Wheat phylogeny determined by RFLP analysis of nuclear-DNA. 2. Wild tetraploid wheats. Theor Appl Genet 90(1):129–134

    Article  CAS  Google Scholar 

  • Nevo E, Korolm AB, Beiles A et al. (eds) (2002) Evolution of wild emmer and wheat improvement: population genetics, genetic resources, and genome organization of wheat’s progenitor, Triticum dicoccoides. Springer, London and Berlin

  • Ogihara Y, Tsunewaki K (1982) Molecular-basis of the genetic diversity of the cytoplasm in Triticum and Aegilops. 1. Diversity of the chloroplast genome and its lineage revealed by the restriction pattern of ct-DNAs. Jpn J Genet 57(4):371–396

    Article  Google Scholar 

  • Ogihara Y, Tsunewaki K (1988) Diversity and evolution of chloroplast DNA in Triticum and Aegilops as revealed by restriction fragment analysis. Theor Appl Genet 76(3):321–332

    Article  CAS  Google Scholar 

  • Ohsako T, Wang GZ, Miyashita NT (1996) Polymerase Chain Reaction Single Strand Conformational Polymorphism analysis of intra- and interspecific variations in organellar DNA regions of Aegilops mutica and related species. Genes Genet Syst 71(5):281–292

    Article  PubMed  CAS  Google Scholar 

  • Sasanuma T, Miyashita NT, Tsunewaki K (1996) Wheat phylogeny determined by RFLP analysis of nuclear DNA. 3. Intra- and interspecific variations of five Aegilops Sitopsis species. Theor Appl Genet 92(8):928–934

    Article  CAS  Google Scholar 

  • Spetsov P, Mingeot D, Jacquemin JM (1997) Transfer of powdery mildew resistance from Aegilops variabilis into bread wheat. Euphytica 93(1):49–54

    Article  Google Scholar 

  • Taberlet P, Gielly L, Pautou G et al. (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol Biol 17:1105–1109

    Article  PubMed  CAS  Google Scholar 

  • Terachi T, Tsunewaki K (1986) The molecular basis of genetic diversity among cytoplasms of Triticum and Aegilops. V. Mitochondrial genome diversity among Aegilops species having identical chloroplast genomes. Theor Appl Genet 73:175–181

    Article  CAS  Google Scholar 

  • Terachi T, Ogihara Y, Tsunewaki K (1984) The molecular-basis of genetic diversity among cytoplasms of Triticum and Aegilops. 3. Chloroplast genomes of the M and modified-M genome-carrying species. Genetics 108(3):681–695

    PubMed  CAS  Google Scholar 

  • Tsunewaki K (1989) Plasmon diversity in Triticum and Aegilops and its implication in wheat evolution. Genome 31(1):143–154

    Google Scholar 

  • Tsunewaki K, Ogihara Y (1983) The molecular-basis of genetic diversity among of Triticum and Aegilops species. 2. On the origin of polyploid wheat cytoplasms cytoplasms as suggested by chloroplast DNA restriction fragment patterns. Genetics 104(1):155–171

    PubMed  CAS  Google Scholar 

  • van Slageren MW (1994) Wild wheats: a monograph of Aegilops L. and Amblyopyrum (Jaub. & Spach) Eig (Poaceae). Wageningen Agricultural University, ICARDA, Aleppo and Agricultural University, Wageningen

    Google Scholar 

  • Vedel F, Quetier F, Cauderon Y et al. (1981) Studies on maternal inheritance in polyploid wheats with cytoplasmic DNAs as genetic-markers. Theor Appl Genet 59(4):239–245

    Google Scholar 

  • Vedel F, Quetier F, Dosba F (1978) Study of wheat phylogeny by EcoR I analysis of chloroplastic and mitochondrial DNAs. Plant Sci Lett 13:97–102

    Article  Google Scholar 

  • Wang GZ, Miyashita NT, Tsunewaki K (1997) Plasmon analyses of Triticum (wheat) and Aegilops: PCR single-strand conformational polymorphism (PCR-SSCP) analyses of organellar DNAs. Proc Natl Acad Sci USA 94(26):14570–14577

    Article  PubMed  CAS  Google Scholar 

  • Wendel JF, Doyle JJ (1998) Phylogenetic incongruence: window into genome history and molecular evolution. In: Soltis DE, Soltis PS, Doyle JJ (eds) Molecular systematics of plants II: DNA sequencing. Kluwer, Dordrecht, The Netherlands, pp 265–296

    Google Scholar 

  • Williams PC (1993) The world of wheat. In: Grains and oilseeds: handling marketing processing. Canadian international Grains institute, Winnipeg, Canada

  • Zohary D, Feldman M (1962) Hybridisation between amphiploids and the evolution of polyploids in the wheat (Aegilops-Triticum) group. Evolution 16:44–61

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Prof. Ibrahim Othman, the Director General of AECS, and Dr. Nizar MirAli, Head of Department, for their support. We also thank Dr. Jan Valkoun at GRU in ICARDA, Aleppo, Syria for providing seeds of accessions used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadia Haider.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haider, N., Nabulsi, I. Identification of Aegilops L. species and Triticum aestivum L. based on chloroplast DNA. Genet Resour Crop Evol 55, 537–549 (2008). https://doi.org/10.1007/s10722-007-9259-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-007-9259-9

Keywords

Navigation