Skip to main content

Advertisement

Log in

Maintaining Genetic Resources of Peach Palm (Bactris gasipaes Kunth): The Role of Seed Migration and Swidden-fallow Management in Northeastern Peru

  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Knowledge of the effects of farmer practices on population genetic parameters of peach palm (Bactris gasipaes Kunth) is relevant to the improvement and conservation of the palm’s genetic resources. Microsatellite markers were used to assess genetic diversity and population structure of peach palm in swidden-fallow agroforestry systems in northeastern Peru. The study covered eight communities, comprising two study areas 160 km apart – one occupied by indigenous Amerindians and the other by mixed race campesinos. Simultaneous analysis of an ex situ peach palm germplasm collection provided a means to compare population genetic parameters. Farmers who were surveyed on seed selection practices for peach palm reported that an average of only four palms (4.3 for campesino and 1.5 for indigenous populations) were used to provide seed for the establishment of the forest gardens sampled. As expected, inbreeding coefficients observed within communities were relatively high (f = 0.105 − 0.210), however, observed heterozygosities within communities were also high (0.625–0.741). A metapopulation approach was used to describe migration within and among regions, implying a hierarchical structure of gene flow which maintains relatively high levels of genetic diversity. Seed migration was found to occur over longer distances (≤600 km) and at a higher frequency (46% of palms sampled) in the indigenous study area, and a proportionally greater number of alleles was found (49 vs. 43 over three loci) with twice as many private alleles occurring only in the indigenous populations. The farmers’ practice of preserving remnant palms through successive swidden generations may have contributed to the maintenance of alleles by reducing the severity of founder effects. Although the campesino study area exhibited a significant (20% of the variation; p < 0.01) isolation-by-distance relationship across 35 km distance, in general, both study populations had relatively limited genetic structure (θ = 0.012–0.03), which is believed to have resulted from the exchange of seeds over long distances and periods of time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

FECONA:

Federación de Comunidades Nativas del Ampiyacu

INIA:

Instituto Nacional de Investigación Agraria

CTAB:

Cetyltrimethyl ammonium bromide

PCR:

Polymerase chain reaction

He :

Expected heterozygosity

Ho :

Observed heterozygosity

θ:

Analogous to F st

ρ:

Analogous to R st

f :

Similar to F is

F :

Similar to F it

References

  • Adin A., Weber J.C., Sotelo-Montes C., Vidaurre H., Vosman B. and Smulders M.J.M. (2004). Genetic differentiation and trade among populations of peach palm (Bactris gasipaes Kunth) in the Peruvian Amazon - implications for genetic resource management. Theor. App. Genet. 108: 1564–1573

    Article  CAS  Google Scholar 

  • Balloux F. and Goudet J. (2002). Statistical properties of population differentiation estimators under stepwise mutation in a finite island model. Mol. Ecol. 11: 771–783

    Article  PubMed  CAS  Google Scholar 

  • Bawa K.S. (1992). Mating systems, genetic differentiation and speciation in tropical rain forest plants. Biotropica 24: 250–255

    Article  Google Scholar 

  • Bohonak A.J. (2002). IBD (Isolation by Distance): a program for analyses of isolation by distance. J. Heredity 93: 153–154

    Article  CAS  Google Scholar 

  • Brown A.H.D. and Marshall D.R. (1995). A basic sampling strategy: theory and practice. In: Guarino, L., Rasmanaths Rao, V. and Reid, R. (eds) Collecting Plant Genetic Diversity: Technical Guidelines, pp 75–91. CAB International, Wallingford

    Google Scholar 

  • Chaumeil J.-P. (2001). The blowpipe Indians: variations on the theme of blowpipe and tube among the Yahua Indians of the Peruvian Amazon. In: Rival, L.M. and Whitehead, N.L. (eds) Beyond the Visible and the Material: The Amerindianization of Society in the Work of Peter Rivière, pp 81–100. Oxford Univ. Press, New York

    Google Scholar 

  • Clement C.R. (1988). Domestication of the pejibaye palm (Bactris gasipaes): past and present. Adv. Econ. Bot. 6: 155–174

    Google Scholar 

  • Clement C.R. (1989). The potential use of the pejibaye palm in agroforestry systems. Agroforest. Syst. 7: 201–212

    Article  Google Scholar 

  • Clement C.R. (1990). Regeneração natural de pupunha (Bactris gasipaes). Acta Amazonica 20: 399–403

    Google Scholar 

  • Clement C.R. (1992). Domesticated palms. Principes 36: 70–78

    Google Scholar 

  • Clement C.R. 1995. Growth and genetic analysis of pejibaye (Bactris gasipaes Kunth, Palmae) in Hawaii. Ph.D. Dissertation, University of Hawaii Manoa, Honolulu, 221 pp.

  • Clement C.R., Mallikarjuna K.A. and Manshardt R.M. (1997). Allozyme variation in spineless pejibaye (Bactris gasipaes Palmae). Econ. Bot. 51: 149–157

    Google Scholar 

  • Clement C.R., Weber J.C., Astorga Domian C., Cole D.M., Arévalo Lopez L.A., Argüello H. and Leeuwen J. (2004). Why extensive research and development did not promote use of peach palm fruit in Latin America. In: Nair, P.K.R., Rao, M.R., and Buck, L.E. (eds) New Vistas in Agroforestry: A Compendium for the First World Congress of Agroforestry, Adv. Agrofor., pp 195–206. Kluwer, Dordrecht

    Google Scholar 

  • Denevan W.M. and Treacy J.M. 1987. Young managed fallows at Brillo Nuevo. In: Denevan W.M. and Padoch C. (eds), Swidden-fallow Agroforestry in the Peruvian Amazon. Advan. Econ. Bot. 5., New York Botanical Garden, Bronx, pp. 8–46.

  • Dieringer D. and Schlötter C. (2003). Microsatellite analyzer (MSA): a platform independent analysis tool for large microsatellite data sets. Mol. Ecol. Notes 3: 167–169

    Article  CAS  Google Scholar 

  • Doyle J.J. and Doyle J.L. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19: 11–15

    Google Scholar 

  • Erikson P. (2001). Myth and material culture: Matis blowguns, palm trees and ancestors. In: Rival, L.M. and Whitehead, N.L. (eds) Beyond the Visible and the Material: The Amerindianization of Society in the Work of Peter Rivière, pp 101–122. Oxford Univ. Press, New York

    Google Scholar 

  • Goodman S.J. (1997). R st Calc: a collection of computer programs for calculating estimates of genetic differentiation from microsatellite data and determining their significance. Mol. Ecol. 6: 881–885

    Article  CAS  Google Scholar 

  • Guo S.W. and Thompson E.A. (1992). Performing the exact test for Hardy–Weinberg proportions for multiple alleles. Biometrics 48: 2868–2872

    Article  Google Scholar 

  • Hamrick J.L., Godt M.J.W. and Sherman-Broyles S.L. (1992). Factors influencing levels of genetic diversity in woody plant species. New Forests 6: 95–124

    Article  Google Scholar 

  • Hanski I. and Gilpin M. (1991). Metapopulation dynamics: brief history and conceptual domain. Biol. J. Linn. Soc. 42: 3–16

    Google Scholar 

  • Labarta R.A. and Weber J.C. (1998). Valorización económica de bienes tangibles de cinco especies arbóreas agroforestales en la Cuenca Amazónica Peruana. Rev. Forestal Centroamericana 23: 12–21

    Google Scholar 

  • Listabarth C. (1996). Pollination of Bactris by Phyllotrox and Epurea. Implications of the palm breeding beetles on pollination at the community level. Biotropica 28: 69–81

    Article  Google Scholar 

  • Louette D. (2000). Traditional management of seed and genetic diversity: what is a landrace?. In: Brush, S.B. (eds) Genes in the Field: On-farm Conservation of Crop Diversity, pp 109–142. Lewis Publ., International Development Research Centre, International Plant Genetic Resource Institute, Boca Raton

    Google Scholar 

  • Martínez A.K., Gaitán-Solis E., Duque M.C., Bernal R. and Tohme J. (2002). Microsatellite loci in Bactris gasipaes (Arecaceae): their isolation and characterization. Mol. Ecol. Notes 2: 408–410

    Article  Google Scholar 

  • Maruyama T. and Fuerst P.A. (1985). Population bottlenecks and nonequilibrium models in population genetics. III. Genic homozygosity in populations which experience periodic bottlenecks. Genetics 111: 691–703

    PubMed  CAS  Google Scholar 

  • Miranda I.P. de and Clement C.R. (1990). Germinación y almacenamiento del polen de pejibaye (Bactris gasipaes H.B.K., Palmae). Rev. Biol. Trop. 38: 29–33

    Google Scholar 

  • Mora-Urpí J. and Solis E.M. (1980). Polinización en Bactris gasipaes H.B.K. (Palmae). Rev. Biol. Trop. 28: 153–174

    Google Scholar 

  • Mora-Urpí J. (1982). Polinización en Bactris gasipaes H.B.K. (Palmae): nota adicional. Rev. Biol. Trop. 30: 174–176

    Google Scholar 

  • Mora-Urpí J. and Clement C.R. (1988). Races and populations of peach palm found in the Amazon basin. In: Clement, C.R. and Coradin, L. (eds) Final Report (revised): Peach Palm (Bactris gasipaes H.B.K.) Germplasm Bank, pp 78–94. U.S. Agency Int. Develop., Manaus

    Google Scholar 

  • Nei M., Maruyama T. and Chakraborty P. (1975). The bottleneck effect and genetic variability in populations. Evolution 29: 1–10

    Article  Google Scholar 

  • Raymond M. and Rousset F. (1995). GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J. Heredity 86: 248–249

    Google Scholar 

  • Rival L.M. (2002). Trekking Through History: The Huaorani of Amazonian Ecuador. Columbia Univ. Press, New York, 84–93

    Google Scholar 

  • Rodrigues D.P., Astolfi-Filho S. and Clement C.R. (2004a). Molecular marker-mediated validation of morphologically defined landraces of pejibaye (Bactris gasipaes) and their phylogenetic relationships. Gen. Res. Crop Evol. 51: 871–882

    Article  CAS  Google Scholar 

  • Rodrigues D.P., Vinson C., Ciampi A.Y., Farias I.P., Lemes M.R., Astolfi-Filho S. and Clement C.R. (2004b). Novel microsatellite markers for Bactris gasipaes (Palmae). Mol. Ecol. Notes 4: 575–576

    Article  CAS  Google Scholar 

  • San Román J.V. (1975). Perfiles históricos de la Amazonía Peruana. Ediciones Paulinas. Publicaciones CETA, Lima, 244

    Google Scholar 

  • Schultes R.E. (1974). Palms and religion in the northwest Amazon. Principes 18: 3–21

    Google Scholar 

  • Slatkin M. (1977). Gene flow and genetic drift in a species subject to frequent local extinctions. Theor. Pop. Biol. 12: 253–262

    Article  CAS  Google Scholar 

  • Slatkin M. (1995). A measure of population subdivision based on microsatellite allele frequencies. Genetics 139: 457–462

    PubMed  CAS  Google Scholar 

  • Weber J.C., Labarta-Chávarri R., Sotelo-Montes C., Brodie A.W., Cromwell E., Schreckenberg K. and Simons A.J. (1997). Farmers’ use and management of tree germplasm: case studies from the Peruvian Amazon Basin. In: Simons, A.J., Kindt, R., and Place, F. (eds) Proceedings of an International Workshop on Policy Aspects of Tree Germplasm Demand and Supply, pp 57–63. International Centre for Research in Agroforestry, Nairobi

    Google Scholar 

  • Weber J.C., Sotelo-Montes C., Vidaurre H., Dawson I.K. and Simons A.J. (2001). Participatory domestication of agroforestry trees: an example from the Peruvian Amazon. Dev. Practice 11: 425–433

    Article  Google Scholar 

  • Weir B.S. and Cockerham C.C. (1984). Estimating F-statistics for the analysis of population structure. Evolution 38: 1358–1370

    Article  Google Scholar 

  • Wright S. (1951). The genetical structure of populations. Ann. Eugenic. 15: 323–354

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Cole.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cole, D.M., White, T.L. & Nair, P.K.R. Maintaining Genetic Resources of Peach Palm (Bactris gasipaes Kunth): The Role of Seed Migration and Swidden-fallow Management in Northeastern Peru. Genet Resour Crop Evol 54, 189–204 (2007). https://doi.org/10.1007/s10722-005-3134-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-005-3134-3

Keywords

Navigation