Skip to main content

Advertisement

Log in

Genetic differentiation and trade among populations of peach palm (Bactris gasipaes Kunth) in the Peruvian Amazon—implications for genetic resource management

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Peach palm (Bactris gasipaes Kunth) is cultivated for fruit and ‘heart of palm’, and is an important component of agroforestry systems in the Peruvian Amazon. In this study, AFLP was used to compare genetic diversity among domesticated populations along the Paranapura and Cuiparillo rivers, which are managed by indigenous and colonist farming communities, respectively. Gene diversity was 0.2629 for the populations in indigenous communities and 0.2534 in colonist communities. Genetic differentiation among populations (G st) was 0.0377–0.0416 (P<0.01) among populations along both rivers. There was no relation between genetic differentiation and the geographical location of populations along the rivers. Since natural seed dispersal by birds and rodents is thought to occur only across relatively short distances (100–200 m), it is likely that exchange of material by farmers and commercial traders is responsible for most of the ‘long-distance’ (over more than 20 km) gene flow among populations along the two rivers studied. This exchange of material may be important to counteract the effects of selection as well as genetic drift in small groups of trees in farmers’ fields, much as in a metapopulation, and may account for the weak genetic differentiation between the two rivers (G st=0.0249, P<0.01). A comparison with samples from other landraces in Peru and Brazil showed the existence of an isolation-by-distance structure up to 3,000 km, consistent with gene flow on a regional scale, likely mediated by trade in the Amazon Basin. Results are discussed with regard to practical implications for the management of genetic resources with farming communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ajmone-Marsan P, Negrini R, Milanesi E, Bozzi R, Nijman IJ, Buntjer JB, Valentini A, Lenstra JA (2002) Genetic distance within and across cattle breeds as indicated by biallelic AFLP markers. Anim Genet 33:280–286

    Article  CAS  PubMed  Google Scholar 

  • Arens P, Coops H, Jansen J, Vosman B (1998) Molecular genetic analysis of black poplar (Populus nigra L.) along Dutch rivers. Mol Ecol 7:11–18

    Article  CAS  Google Scholar 

  • Bohonak AJ (2002) IBD (Isolation By Distance): a program for analyses of isolation by distance. J Hered 93:153–154

    Article  CAS  PubMed  Google Scholar 

  • Brodie AW, Labarta Chávarri RA, Weber JC (1997) Tree germplasm management and use on-farm in the Peruvian Amazon: a case study from the Ucayali region, Peru. Research report, Overseas Development Institute, London and International Centre for Research in Agroforestry, Nairobi, Kenya

  • Brown AHD, Marshall DR (1995) A basic sampling strategy: theory and practice. In: Guarino L, Rasmanatha Rao V, Reid R (eds) Collecting plant genetic diversity—technical guidelines. CAB International, Wallingford, UK, pp 75–91

  • Clement CR (1988) Domestication of the pejibaye palm (Bactris gasipaes): past and present. Adv Econ Bot 6:155–174

    Google Scholar 

  • Clement CR (1990) Regeneração natural de pupunha (Bactris gasipaes). Acta Amazonica 20:399–403

    Google Scholar 

  • Clement CR, Arkcoll DB (1984) Observações sobre autocompatibilidade em pupunha (Bactris gasipaes H.B.K., Palmae). Acta Amazonica 14:337–342

    Google Scholar 

  • Clement CR, Mora-Urpí J (1987) Pejibaye palm (Bactris gasipaes, Arecaceae): multi-use potential for the lowland humid tropics. Econ Bot 41: 302–311

    Google Scholar 

  • Clement CR, Aradhya MK, Manshardt MR (1997) Allozyme variation in spineless pejibaye (Bactris gasipaes Palmae). Econ Bot 51:149–157

    Google Scholar 

  • Clement CR, Reis Sousa N, Picanço Rodriques D, Astolfí Filho S, Núñez Moreno Y, Torres Pascual V, Gallego Rodríguez FJ (2002) Use of AFLPs to distinguish landraces of pejibaje (Bactris gasipaes) in Brazilian Amazonia. Sci Agric 59:749–753

    Google Scholar 

  • Felsenstein J (1989) PHYLIP—Phylogeny Inference Package, version 3.2. Cladistics 5:164–166

    Google Scholar 

  • Fulton E, Chunwongse J, Tanksley SD (1995) Microprep protocol for extraction of DNA from tomato and other herbaceous plants. Plant Mol Biol Rep 13:207–209

    CAS  Google Scholar 

  • Gaiotto FA, Grattapaglia D, Vencovsky R (2003) Genetic structure, mating system, and long-distance gene flow in heart of palm (Euterpe edulis Mart.). J Hered 94:399–406

    Article  CAS  PubMed  Google Scholar 

  • Giles BE, Goudet J (1997) A case study of genetic structure in a plant metapopulation. In: Hanski IA, Gilpin ME (eds) Metapopulation biology: ecology, genetics, and evolution. Academic Press, San Diego, pp 429–454

  • Iriarte Martel JH, Ferraudo AS, Môro JR, Perecin D (2003) Estatística multivariada na discriminação de raças amazônicas de pupunheiras (Bactris gasipaes Kunth) em Manaus (Brasil). Rev Bras Fruticult 25:115–118

    Google Scholar 

  • Ledig FT (1992) Human impacts on genetic diversity in forest ecosystems. Oikos 63:87–108

    Google Scholar 

  • Louette D (2000) Traditional management of seed and genetic diversity: what is a landrace? In: Brush SB (ed) Genes in the field: On-farm conservation of crop diversity. Lewis, Boca Raton, Fla., pp 109–142

  • Lynch M, Milligan BG (1994) Analysis of population genetic structure with RAPD markers. Mol Ecol 3: 91–99

    CAS  PubMed  Google Scholar 

  • Miranda IP de A, Clement CR (1990) Germinación y almacenamiento del polen de pejibaye (Bactris gasipaes H.B.K., Palmae). Rev Biol Trop 38:29–33

    Google Scholar 

  • Mora-Urpí J, Clement CR (1988) Races and populations of peach palm found in the Amazon basin. In: Clement CR, Coradin L (eds) Final report (revised): peach palm (Bactris gasipaes) germplasm bank. US-AID project report. INPA/CENARGEN, Manaus, Brazil, pp 78–94

  • Mora-Urpí J, Echeverría JG (1999) Palmito de pejibaye (Bactris gasipaes Kunth): su cultivo e industrialización. Imprensa de la Universidad de Costa Rica, San José, Costa Rica

  • Mora-Urpí J, Solís E (1980) Polinización en Bactris gasipaes H.B.K. Palmae. Rev Biol Trop 28:153–174

    Google Scholar 

  • Mora-Urpí J, Clement CR, Patiño JM (1993) Diversidad genética en pejibaye. I. Razas y poblaciones híbridas. In: Mora-Urpí J, Szott LT, Murillo M, Patiño VM (eds) IV Congreso Internacional sobre Biología, Agronomía e Industrialización del Pijuayo. Editorial de la Universidad de Costa Rica, San José, Costa Rica, pp 11–19

  • Mora-Urpí J, Weber JC, Clement CR (1997) Peach palm (Bactris gasipaes Kunth). Promoting the conservation and use of underutilized and neglected crops. 20. Institute of Plant Genetics and Crop Plant Research, Gatersleben/International Plant Genetics Resources Institute, Rome, Italy. http://www.ipgri.cgiar.org/publications/pdf/155.pdf

  • O’Neill GA, Dawson IK, Sotelo Montes C, Guarino L, Current D, Guariguata M, Weber JC (2001) Strategies for genetic conservation of trees in the Peruvian Amazon basin. Biodivers Conserv 10:837–850

    Article  Google Scholar 

  • Rodrigues DP, Astolfí Filho S, Clement CR (2003) Molecular marker-mediated validation of morphologically defined landraces of pejibaje (Bactris gasipaes) and their phylogenetic relationships. Genet Resour Crop Evol (in press)

  • Rojas-Vargas S, Ramírez P, Mora Urpí J (1999) Polimorfismo isoenzimático en cuatro razas y un híbrido de Bactris gasipaes (Palmae). Rev Biol Trop 47:755–761

    Google Scholar 

  • Russell JR, Weber JC, Booth A, Powell W, Sotelo Montes C, Dawson IK (1999) Genetic variation of riverine populations of Calycophyllum spruceanum in the Peruvian Amazon Basin, revealed by AFLP analysis. Mol Ecol 8:199–204

    Article  Google Scholar 

  • Savelkoul PHM, Aarts HJM, Dijkshoorn L, Duims B, De Haas J, Otsen M, Schouls L, Lenstra JA (1999) Amplified fragment length polymorphism (AFLP), the state of an art. J Clin Microbiol 37:3083–3091

    CAS  PubMed  Google Scholar 

  • Sotelo Montes C, Weber JC (1997) Priorización de especies arbóreas para sistemas agroforestales en la selva baja del Perú. Agrofor Am 4(14):12–17

    Google Scholar 

  • Sousa NR, Rodrigues DP, Clement CR, Nagao EO, Astolfi-Filho S (2001) Discriminação de raças primitivas de pupunha (Bactris gasipaes) na Amazônia brasileira por meio de marcadores moleculares (RAPDs). Acta Amazonica 31:539–545

    Google Scholar 

  • Tanksley SD, McCouch SR (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 227:1063–1066

    Article  Google Scholar 

  • Vekemans X, Beauwens T, Lemaire M, Roldan-Ruiz I (2002) Data from amplified fragment length polymorphism (AFLP) markers show indication of size homoplasy and of a relationship between degree of homoplasy and fragment size. Mol Ecol 11:139–151

    CAS  PubMed  Google Scholar 

  • Villachica HL (1996) Cultivo del Pijuayo (Bactris gasipaes Kunth) para Palmito en la Amazonía. Secretaria Pro-Tempore, Tratado de Cooperación Amazónica, No. 43, Lima, Perú

  • Vos P, Hogers R, Bleeker M, Reijans M, Van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    CAS  PubMed  Google Scholar 

  • Weber JC, Labarta Chávarri RL, Sotelo Montes C, Brodie AW, Cromwell E, Schreckenberg K, Simons AJ (1997) Farmers use and management of tree germplasm: case studies from the Peruvian Amazon Basin. In: Simons AJ, Kindt R, Place F (eds) Proceedings of an International Workshop on Policy Aspects of Tree Germplasm Demand and Supply. International Centre for Research in Agroforestry, Nairobi, Kenya, pp 57–63

  • Weber JC, Sotelo Montes C, Vidaurre H, Dawson IK, Simons AJ (2001) Participatory domestication of agroforestry trees: an example from the Peruvian Amazon. Dev Pract 11:425–433

    Article  Google Scholar 

  • Whitlock MC, McCauley DE (1999) Indirect measures of gene flow and migration: F st≠1/(4Nm + 1). Heredity 82:117–125

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank personnel from the International Centre for Research in Agroforestry in Yurimaguas and Pucallpa, Peru for conducting the fieldwork in this study and providing additional information necessary for the realisation of this study. We also thank Dr. Charles R. Clement, INPA and Paul Arens for providing useful comments on an earlier draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. M. Smulders.

Additional information

Communicated by H.F. Linskens

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adin, A., Weber, J.C., Sotelo Montes, C. et al. Genetic differentiation and trade among populations of peach palm (Bactris gasipaes Kunth) in the Peruvian Amazon—implications for genetic resource management. Theor Appl Genet 108, 1564–1573 (2004). https://doi.org/10.1007/s00122-003-1581-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-003-1581-9

Keywords

Navigation