Skip to main content

Advertisement

Log in

Therapies and therapeutic approaches in Congenital Disorders of Glycosylation

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Inborn errors in glycoconjugate biosynthesis termed ‘Congenital Disorders of Glycosylation’ (CDG) comprise a rapidly expanding group of metabolic diseases in man. Up till now more than 60 different inherited disorders in N- and O-glycosylation pathways have been identified. They affect the biosynthesis of glycan moieties linked to proteins as well as lipids. Due to failures in protein glycosylation, CDG patients suffer from multi systemic disorders, which mostly present with severe psychomotor and mental retardations, muscular impairment, ataxia, failure to thrive and developmental delay. Although improved biochemical and genetic investigations led to identification of a variety of new molecular defects in glycoconjugate biosynthesis, effective therapies for most types of the CDG are so far not available. Therefore, intensive investigations on treatment options for this group of diseases have been carried out in recent years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Dube, D.H., Bertozzi, C.R.: Glycans in cancer and inflammation-potential for therapeutics and diagnostics. Nat. Rev. Drug Discov. 4, 477–488 (2005)

    Article  PubMed  CAS  Google Scholar 

  2. Moskal, J.R., Kroes, R.A., Dawson, G.: The glycobiology of brain tumors: disease relevance and therapeutic potential. Expert Rev. Neurother. 9, 1529–1545 (2009)

    Article  PubMed  CAS  Google Scholar 

  3. Schachter, H., Freeze, H.H.: Glycosylation diseases: quo vadis? Biochim. Biophys. Acta 1792, 925–930 (2009)

    Article  PubMed  CAS  Google Scholar 

  4. Jaeken, J.: Congenital disorders of glycosylation (CDG): it’s (nearly) all in it! J. Inherit. Metab. Dis. 34, 853–858 (2011)

    Article  PubMed  CAS  Google Scholar 

  5. Theodore, M., Morava, E.: Congenital disorders of glycosylation: sweet news. Curr. Opin. Pediatr. 23, 581–587 (2011)

    Article  PubMed  CAS  Google Scholar 

  6. Bertini, E., D’Amico, A., Gualandi, F., Petrini, S.: Congenital muscular dystrophies: a brief review. Semin. Pediatr. Neurol. 18, 277–288 (2011)

    Article  PubMed  Google Scholar 

  7. Jaeken, J.: Congenital disorders of glycosylation. Ann. NY Acad. Sci. 1214, 190–198 (2010)

    Article  PubMed  CAS  Google Scholar 

  8. Niehues, R., Hasilik, M., Alton, G., Körner, C., Schiebe-Sukumar, M., Koch, H.G., Zimmer, K.P., Wu, R., Harms, E., Reiter, K., von Figura, K., Freeze, H.H., Harms, H.K., Marquardt, T.: Carbohydrate-deficient glycoprotein syndrome type Ib. Phosphomannose isomerase deficiency and mannose therapy. J. Clin. Invest. 101, 1414–1420 (1998)

    Article  PubMed  CAS  Google Scholar 

  9. Haeuptle, M.A., Hennet, T.: Congenital disorders of glycosylation: an update on defects affecting the biosynthesis of dolichol-linked oligosaccharides. Hum. Mutat. 30, 1628–1641 (2009)

    Article  PubMed  CAS  Google Scholar 

  10. de Lonlay, P., Seta, N.: The clinical spectrum of phosphomannose isomerase deficiency, with an evaluation of mannose treatment for CDG-Ib. Biochim. Biophys. Acta 1792, 841–843 (2009)

    Article  PubMed  Google Scholar 

  11. Mention, K., Lacaille, F., Valayannopoulos, V., Romano, S., Kuster, A., Cretz, M., Zaidan, H., Galmiche, L., Jaubert, F., de Keyzer, Y., Seta, N., de Lonlay, P.: Development of liver disease despite mannose treatment in two patients with CDG-Ib. Mol. Genet. Metab. 93, 40–43 (2008)

    Article  PubMed  CAS  Google Scholar 

  12. Alton, G., Kjaergaard, S., Etchison, J.R., Skovby, F., Freeze, H.H.: Oral ingestion of mannose elevates blood mannose levels: a first step toward a potential therapy for carbohydrate-deficient glycoprotein syndrome type I. Biochem. Mol. Med. 60, 127–133 (1997)

    Article  PubMed  CAS  Google Scholar 

  13. Wood, F.C., Cahill, G.F.: Mannose utilization in man. J. Clin. Invest. 42, 1300–1312 (1963)

    Article  PubMed  CAS  Google Scholar 

  14. DeRossi, C., Bode, L., Eklund, E.A., Zhang, F., Davis, J.A., Westphal, V., Wang, L., Borowsky, A.D., Freeze, H.H.: Ablation of mouse phosphomannose isomerase (Mpi) causes mannose 6-phosphate accumulation, toxicity, and embryonic lethality. J. Biol. Chem. 281, 5916–5927 (2006)

    Article  PubMed  CAS  Google Scholar 

  15. Sols, A., Cadenas, E., Alvarado, F.: Enzymatic basis of mannose toxicity in honey bees. Science 131, 297–298 (1960)

    Article  PubMed  CAS  Google Scholar 

  16. de la Fuente, M., Peñas, P.F., Sols, A.: Mechanism of mannose toxicity. Biochem. Biophys. Res. Commun. 140, 51–55 (1986)

    Article  PubMed  Google Scholar 

  17. Harms, H.K., Zimmer, K.P., Kurnik, K., Bertele-Harms, R.M., Weidinger, S., Reiter, K.: Oral mannose therapy persistently corrects the severe clinical symptoms and biochemical abnormalities of phosphomannose isomerase deficiency. Acta Paediatr. 91, 1065–1072 (2002)

    Article  PubMed  CAS  Google Scholar 

  18. Schroeder, A.S., Kappler, M., Bonfert, M., Borggraefe, I., Schoen, C., Reiter, K.: Seizures and stupor during intravenous mannose therapy in a patient with CDG syndrome type 1b (MPI-CDG). J. Inherit. Metab. Dis. (2011). doi:10.1007/s10545-010-9252-x

  19. Liem, Y.S., Bode, L., Freeze, H.H., Leebeek, F.W., Zandbergen, A.A., Paul Wilson, J.: Using heparin therapy to reverse protein-losing enteropathy in a patient with CDG-Ib. Nat. Clin. Pract. Gastroenterol. Hepatol. 5, 220–224 (2008)

    Article  PubMed  Google Scholar 

  20. Etzioni, A., Frydman, M., Pollack, S., Avidor, I., Phillips, M.L., Paulson, J.C., Gershoni-Baruch, R.: Brief report: recurrent severe infections caused by a novel leukocyte adhesion deficiency. N. Engl. J. Med. 327, 1789–1792 (1992)

    Article  PubMed  CAS  Google Scholar 

  21. Lübke, T., Marquardt, T., Etzioni, A., Hartmann, E., von Figura, K., Körner, C.: Complementation cloning identifies CDG-IIc, a new type of congenital disorders of glycosylation, as a GDP-fucose transporter deficiency. Nat. Genet. 28, 73–76 (2001)

    PubMed  Google Scholar 

  22. Lühn, K., Wild, M.K., Eckhardt, M., Gerardy-Schahn, R., Vestweber, D.: The gene defective in leukocyte adhesion deficiency II encodes a putative GDP-fucose transporter. Nat. Genet. 28, 69–72 (2001)

    PubMed  Google Scholar 

  23. Lübke, T., Marquardt, T., von Figura, K., Körner, C.: A new type of carbohydrate-deficient glycoprotein syndrome due to a decreased import of GDP-fucose into the golgi. J. Biol. Chem. 274, 25986–25989 (1999)

    Article  PubMed  Google Scholar 

  24. Marquardt, T., Brune, T., Lühn, K., Zimmer, K.P., Körner, C., Fabritz, L., van der Werft, N., Vormoor, J., Freeze, H.H., Louwen, F., Biermann, B., Harms, E., von Figura, K., Vestweber, D., Koch, H.G.: Leukocyte adhesion deficiency II syndrome, a generalized defect in fucose metabolism. J. Pediatr. 134, 681–688 (1999)

    Article  PubMed  CAS  Google Scholar 

  25. Etzioni, A., Tonetti, M.: Fucose supplementation in leukocyte adhesion deficiency type II. Blood 95, 3641–3643 (2000)

    PubMed  CAS  Google Scholar 

  26. Hidalgo, A., Ma, S., Peired, A.J., Weiss, L.A., Cunningham-Rundles, C., Frenette, P.S.: Insights into leukocyte adhesion deficiency type 2 from a novel mutation in the GDP-fucose transporter gene. Blood 101, 1705–1712 (2003)

    Article  PubMed  CAS  Google Scholar 

  27. Helmus, Y., Denecke, J., Yakubenia, S., Robinson, P., Lühn, K., Watson, D.L., McGrogan, P.J., Vestweber, D., Marquardt, T., Wild, M.K.: Leukocyte adhesion deficiency II patients with a dual defect of the GDP-fucose transporter. Blood 107, 3959–3966 (2006)

    Article  PubMed  CAS  Google Scholar 

  28. Marquardt, T., Lühn, K., Srikrishna, G., Freeze, H.H., Harms, E., Vestweber, D.: Correction of leukocyte adhesion deficiency type II with oral fucose. Blood 94, 3976–3985 (1999)

    PubMed  CAS  Google Scholar 

  29. Sturla, L., Puglielli, L., Tonetti, M., Berninsone, P., Hirschberg, C.B., De Flora, A., Etzioni, A.: Impairment of the Golgi GDP-L-fucose transport and unresponsiveness to fucose replacement therapy in LAD II patients. Pediatr. Res. 49, 537–542 (2001)

    Article  PubMed  CAS  Google Scholar 

  30. Lühn, K., Marquardt, T., Harms, E., Vestweber, D.: Discontinuation of fucose therapy in LADII causes rapid loss of selectin ligands and rise of leukocyte counts. Blood 97, 330–332 (2001)

    Article  PubMed  Google Scholar 

  31. Wild, M.K., Lühn, K., Marquardt, T., Vestweber, D.: Leukocyte adhesion deficiency II: therapy and genetic defect. Cells Tissues Organs 172, 161–173 (2002)

    Article  PubMed  CAS  Google Scholar 

  32. Hidalgo, A., Ma, S., Peired, A.J., Weiss, L.A., Cunningham-Rundles, C., Frenette, P.S.: Insights into leukocyte adhesion deficiency type 2 from a novel mutation in the GDP-fucose transporter gene. Blood 101, 1705–1712 (2003)

    Article  PubMed  CAS  Google Scholar 

  33. Gazit, Y., Mory, A., Etzioni, A., Frydman, M., Scheuerman, O., Gershoni-Baruch, R., Garty, B.Z.: Leukocyte adhesion deficiency type II: long-term follow-up and review of the literature. J. Clin. Immunol. 30, 308–313 (2010)

    Article  PubMed  CAS  Google Scholar 

  34. Chantret, I., Dancourt, J., Dupré, T., Delenda, C., Bucher, S., Vuillaumier-Barrot, S., Ogier de Baulny, H., Peletan, C., Danos, O., Seta, N., Durand, G., Oriol, R., Codogno, P., Moore, S.E.: A deficiency in dolichyl-P-glucose:Glc1Man9GlcNAc2-PP-dolichyl alpha3-glucosyltransferase defines a new subtype of congenital disorders of glycosylation. J. Biol. Chem. 278, 9962–9971 (2003)

    Article  PubMed  CAS  Google Scholar 

  35. Almeida, A.M., Murakami, Y., Layton, D.M., Hillmen, P., Sellick, G.S., Maeda, Y., Richards, S., Patterson, S., Kotsianidis, I., Mollica, L., Crawford, D.H., Baker, A., Ferguson, M., Roberts, I., Houlston, R., Kinoshita, T., Karadimitris, A.: Hypomorphic promoter mutation in PIGM causes inherited glycosylphosphatidylinositol deficiency. Nat. Med. 12, 846–851 (2006)

    Article  PubMed  CAS  Google Scholar 

  36. Almeida, A.M., Murakami, Y., Baker, A., Maeda, Y., Roberts, I.A., Kinoshita, T., Layton, D.M., Karadimitris, A.: Targeted therapy for inherited GPI deficiency. N. Engl. J. Med. 356, 1641–1647 (2007)

    Article  PubMed  CAS  Google Scholar 

  37. Almeida, A., Layton, M., Karadimitris, A.: Inherited glycosylphosphatidyl inositol deficiency: a treatable CDG. Biochim. Biophys. Acta 1792, 874–880 (2009)

    Article  PubMed  CAS  Google Scholar 

  38. Panneerselvam, K., Freeze, H.H.: Mannose corrects altered N-glycosylation in carbohydrate deficient glycoprotein syndrome fibroblasts. J. Clin. Invest. 97, 1478–1487 (1996)

    Article  PubMed  CAS  Google Scholar 

  39. Körner, C., Lehle, L., von Figura, K.: Carbohydrate- deficient glycoprotein syndrome type 1: correction of the glycosylation defect by deprivation of glucose or supplementation of mannose. Glycoconj. J. 15, 499–505 (1998)

    Article  PubMed  Google Scholar 

  40. Mayatepek, E., Kohlmüller, D.: Mannose supplementation in carbohydrate-deficient glycoprotein syndrome type I and phosphomannomutase deficiency. Eur. J. Pediatr. 157, 605–606 (1998)

    Article  PubMed  CAS  Google Scholar 

  41. Kjaergaard, S., Kristiansson, B., Stibler, H., Freeze, H.H., Schwartz, M., Martinsson, T., Skovby, F.: Failure of short-term mannose therapy of patients with carbohydrate-deficient glycoprotein syndrome type 1A. Acta Paediatr. 87, 884–888 (1998)

    Article  PubMed  CAS  Google Scholar 

  42. Mayatepek, E., Schröder, M., Kohlmüller, D., Bieger, W.P., Nützenadel, W.: Continuous mannose infusion in carbohydrate-deficient glycoprotein syndrome type I. Acta Paediatr. 86, 1138–1140 (1997)

    Article  PubMed  CAS  Google Scholar 

  43. Rutschow, S., Thiem, J., Kranz, C., Marquardt, T.: Membrane-permeant derivatives of mannose-1-phosphate. Bioorg. Med. Chem. 10, 4043–4049 (2002)

    Article  PubMed  CAS  Google Scholar 

  44. Eklund, E.A., Merbouh, N., Ichikawa, M., Nishikawa, A., Clima, J.M., Dorman, J.A., Norberg, T., Freeze, H.H.: Hydrophobic Man-1-P derivatives correct abnormal glycosylation in Type I congenital disorder of glycosylation fibroblasts. Glycobiology 15, 1084–1093 (2005)

    Article  PubMed  CAS  Google Scholar 

  45. Hardré, R., Khaled, A., Willemetz, A., Dupré, T., Moore, S., Gravier-Pelletier, C., Le Merrer, Y.: Mono, di and tri-mannopyranosyl phosphates as mannose-1-phosphate prodrugs for potential CDG-Ia therapy. Bioorg. Med. Chem. Lett. 17, 152–155 (2007)

    Article  PubMed  Google Scholar 

  46. Shang, J., Lehrman, M.A.: Metformin-stimulated mannose transport in dermal fibroblasts. J. Biol. Chem. 279, 9703–9712 (2004)

    Article  PubMed  CAS  Google Scholar 

  47. Dahl, R., Bravo, Y., Sharma, V., Ichikawa, M., Dhanya, R.P., Hedrick, M., Brown, B., Rascon, J., Vicchiarelli, M., Mangravita-Novo, A., Yang, L., Stonich, D., Su, Y., Smith, L.H., Sergienko, E., Freeze, H.H., Cosford, N.D.: Potent, selective, and orally available benzoisothiazolone phosphomannose isomerase inhibitors as probes for congenital disorder of glycosylation Ia. J. Med. Chem. 54, 3661–3668 (2011)

    Article  PubMed  CAS  Google Scholar 

  48. Sharma, V., Ichikawa, M., He, P., Bravo, Y., Dahl, R., Ng, B.G., Cosford, N.D., Freeze, H.H.: Phosphomannose isomerase inhibitors improve N-glycosylation in selected phosphomannomutase-deficient fibroblasts. J. Biol. Chem. 286, 39431–39438 (2011)

    Article  PubMed  CAS  Google Scholar 

  49. Thiel, C., Körner, C.: Mouse models for congenital disorders of glycosylation. J. Inherit. Metab. Dis. 34, 879–889 (2011)

    Article  PubMed  CAS  Google Scholar 

  50. Muntoni, F., Torelli, S., Wells, D.J., Brown, S.C.: Muscular dystrophies due to glycosylation defects: diagnosis and therapeutic strategies. Curr. Opin. Neurol. 24, 437–442 (2011)

    Article  PubMed  CAS  Google Scholar 

  51. Ishikawa, H.O., Higashi, S., Ayukawa, T., Sasamura, T., Kitagawa, M., Harigaya, K., Aoki, K., Ishida, N., Sanai, Y., Matsuno, K.: Notch deficiency implicated in the pathogenesis of congenital disorder of glycosylation IIc. Proc. Natl. Acad. Sci. USA 102, 18532–18537 (2005)

    Article  PubMed  CAS  Google Scholar 

  52. Nakamura, N., Lyalin, D., Panin, V.M.: Protein O-mannosylation in animal development and physiology: from human disorders to Drosophila phenotypes. Semin. Cell Dev. Biol. 21, 622–630 (2010)

    Article  PubMed  CAS  Google Scholar 

  53. Thornhill, P., Bassett, D., Lochmüller, H., Bushby, K., Straub, V.: Developmental defects in a zebrafish model for muscular dystrophies associated with the loss of fukutin-related protein (FKRP). Brain 131, 1551–1561 (2008)

    Article  PubMed  Google Scholar 

  54. Song, Y., Willer, J.R., Scherer, P.C., Panzer, J.A., Kugath, A., Skordalakes, E., Gregg, R.G., Willer, G.B., Balice-Gordon, R.J.: Neural and synaptic defects in slytherin, a zebrafish model for human congenital disorders of glycosylation. PLoS One 5, e13743 (2010)

    Article  PubMed  Google Scholar 

  55. Avsar-Ban, E., Ishikawa, H., Manya, H., Watanabe, M., Akiyama, S., Miyake, H., Endo, T., Tamaru, Y.: Protein O-mannosylation is necessary for normal embryonic development in zebrafish. Glycobiology 20, 1089–1102 (2010)

    Article  PubMed  CAS  Google Scholar 

  56. Struwe, W.B., Hughes, B.L., Osborn, D.W., Boudreau, E.D., Shaw, K.M., Warren, C.E.: Modeling a congenital disorder of glycosylation type I in C. elegans: a genome-wide RNAi screen for N-glycosylation-dependent loci. Glycobiology 19, 1554–1562 (2009)

    Article  PubMed  CAS  Google Scholar 

  57. Struwe, W.B., Warren, C.E.: High-throughput RNAi screening for N-glycosylation dependent loci in Caenorhabditis elegans. Methods Enzymol. 480, 477–493 (2010)

    Article  PubMed  CAS  Google Scholar 

  58. Schneider, A., Thiel, C., Rindermann, J., DeRossi, C., Popovici, D., Hoffmann, G.F., Gröne, H.J., Körner, C.: Successful prenatal mannose treatment for congenital disorder of glycosylation-Ia in mice. Nat. Med. 18, 71–73 (2012)

    Article  CAS  Google Scholar 

  59. Barresi, R., Michele, D.E., Kanagawa, M., Harper, H.A., Dovico, S.A., Satz, J.S., Moore, S.A., Zhang, W., Schachter, H., Dumanski, J.P., Cohn, R.D., Nishino, I., Campbell, K.P.: LARGE can functionally bypass alpha-dystroglycan glycosylation defects in distinct congenital muscular dystrophies. Nat. Med. 10, 696–703 (2004)

    Article  PubMed  CAS  Google Scholar 

  60. Kanagawa, M., Nishimoto, A., Chiyonobu, T., Takeda, S., Miyagoe-Suzuki, Y., Wang, F., Fujikake, N., Taniguchi, M., Lu, Z., Tachikawa, M., Nagai, Y., Tashiro, F., Miyazaki, J., Tajima, Y., Takeda, S., Endo, T., Kobayashi, K., Campbell, K.P., Toda, T.: Residual laminin-binding activity and enhanced dystroglycan glycosylation by LARGE in novel model mice to dystroglycanopathy. Hum. Mol. Genet. 18, 621–631 (2009)

    Article  PubMed  CAS  Google Scholar 

  61. Brockington, M., Torelli, S., Sharp, P.S., Liu, K., Cirak, S., Brown, S.C., Wells, D.J., Muntoni, F.: Transgenic overexpression of LARGE induces α-dystroglycan hyperglycosylation in skeletal and cardiac muscle. PLoS One 5, e14434 (2010)

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work of C.T. and C.K. was supported by grants of the Deutsche Forschungsgemeinschaft (KO2152/1-3 and TH1461/2-1), the Else Kröner-Fresenius-Stiftung (2010_A89) and the Baden-Württemberg Stiftung (P-BWS-Glyko/04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Thiel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thiel, C., Körner, C. Therapies and therapeutic approaches in Congenital Disorders of Glycosylation. Glycoconj J 30, 77–84 (2013). https://doi.org/10.1007/s10719-012-9447-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-012-9447-5

Keywords

Navigation