Skip to main content
Log in

Characterization of chondroitin sulfate from deer tip antler and osteogenic properties

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Deer antler is a highly regenerative tissue that involves cellular differentiation, osteogenesis and ossification processes. Chondroitin sulfate is the major glycosaminoglycan contained in antler connective tissue and has been isolated from cartilaginous antler by 4 M GuHCl extraction, gradient ultracentrifugation and chromatography techniques. We examined the disaccharide composition by 2-AB labeling and anion exchange HPLC analysis of the three resultant fractions (high, medium and low density fractions). The high density fraction consists of A-unit and D-unit disaccharide in the ratio of 1:1, whereas, the CS disaccharide composition ratio of A- unit:C-unit:D-Unit:E-unit contained in medium and low density fractions are 3:4:3:1 and 2:2:2:1, respectively. The only intact CS oligosaccharides of the medium density fraction upregulated gene expression of bone-specific proteins of a human osteoblastic cell line (hFOB1.19). Thus, CS oligosaccharides from cartilaginous deer antler, with their oversulfated chondroitin sulfate composition, demonstrated the physiological properties and may be good candidates for osteogenetic agents in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

GuHCl:

Guanidine hydrochloride

2-AB:

2-aminobenzamide

HPLC:

High performance liquid chromatography

CS:

Chondroitin sulfate

PG:

Proteoglycan

GlcA:

Glucuronic acid

IdoA:

Iduronic acid

GalNAc:

N-acetyl-D-galactosamine

CsCl:

Cesium chloride

s-GAG:

Sulfated glycosaminoglycan

CS’ase:

Chondroitinase

mIU:

Milli international unit

References

  1. Li, C., Suttie, J.M.: Deer antlerogenic periosteum: a piece of postnatally retained embryonic tissue? Anat. Embryol. (Berl) 204, 375–88 (2001)

    Article  CAS  Google Scholar 

  2. Banks, W.J.: The ossification process of the developing antler in the white-tailed deer (Odocoileus virginianus). Calcif. Tissue Res. 14, 257–74 (1974)

    Article  PubMed  CAS  Google Scholar 

  3. Newbrey, J.W., Banks, W.J.: Ultrastructural changes associated with the mineralization of deer antler cartilage. Am. J. Anat. 166, 1–17 (1983)

    Article  PubMed  CAS  Google Scholar 

  4. Price, J.S., Oyajobi, B.O., Nalin, A.M., Frazer, A., Russell, R.G., Sandell, L.J.: Chondrogenesis in the regenerating antler tip in red deer: expression of collagen types I, IIA, IIB, and X demonstrated by in situ nucleic acid hybridization and immunocytochemistry. Dev. Dyn. 205, 332–47 (1996)

    Article  PubMed  CAS  Google Scholar 

  5. Faucheux, C., Nesbitt, S.A., Horton, M.A., Price, J.S.: Cells in regenerating deer antler cartilage provide a microenvironment that supports osteoclast differentiation. J. Exp. Biol. 204, 443–55 (2001)

    PubMed  CAS  Google Scholar 

  6. Sunwoo, H.H., Nakano, T., Hudson, R.J., Sim, J.S.: Isolation, characterization and localization of glycosaminoglycans in growing antlers of wapiti (Cervus elaphus). Comp. Biochem. Physiol. B Biochem. Mol. Biol. 120, 273–83 (1998)

    Article  PubMed  CAS  Google Scholar 

  7. Ha, Y.W., Jeon, B.T., Moon, S.H., Toyoda, H., Toida, T., Linhardt, R.J., et al.: Characterization of heparan sulfate from the unossified antler of Cervus elaphus. Carbohydr. Res. 340, 411–6 (2005)

    Article  PubMed  CAS  Google Scholar 

  8. Kim, K.S., Choi, Y.H., Kim, K.H., Lee, Y.C., Kim, C.H., Moon, S.H., et al.: Protective and anti-arthritic effects of deer antler aqua-acupuncture (DAA), inhibiting dihydroorotate dehydrogenase, on phosphate ions-mediated chondrocyte apoptosis and rat collagen-induced arthritis. Int. Immunopharmacol. 4, 963–73 (2004)

    Article  PubMed  CAS  Google Scholar 

  9. Kim, K.H., Kim, K.S., Choi, B.J., Chung, K.H., Chang, Y.C., Lee, S.D., et al.: Anti-bone resorption activity of deer antler aqua-acupunture, the pilose antler of Cervus Korean TEMMINCK var. mantchuricus Swinhoe (Nokyong) in adjuvant-induced arthritic rats. J. Ethnopharmacol. 96, 497–506 (2005)

    Article  PubMed  Google Scholar 

  10. Rucklidge, G.J., Milne, G., Bos, K.J., Farquharson, C., Robins, S.P.: Deer antler does not represent a typical endochondral growth system: immunoidentification of collagen type X but little collagen type II in growing antler tissue. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 118, 303–8 (1997)

    Article  PubMed  CAS  Google Scholar 

  11. Park, H.J., Lee, D.H., Park, S.G., Lee, S.C., Cho, S., Kim, H.K., et al.: Proteome analysis of red deer antlers. Proteomics 4, 3642–53 (2004)

    Article  PubMed  CAS  Google Scholar 

  12. Letourneau, P.C., Condic, M.L., Snow, D.M.: Extracellular matrix and neurite outgrowth. Curr. Opin. Genet. Dev. 2, 625–34 (1992)

    Article  PubMed  CAS  Google Scholar 

  13. Reichardt, L.F., Tomaselli, K.J.: Extracellular matrix molecules and their receptors: functions in neural development. Annu. Rev. Neurosci. 14, 531–70 (1991)

    Article  PubMed  CAS  Google Scholar 

  14. Sugahara, K., Mikami, T., Uyama, T., Mizuguchi, S., Nomura, K., Kitagawa, H.: Recent advances in the structural biology of chondroitin sulfate and dermatan sulfate. Curr. Opin. Struct. Biol. 13, 612–20 (2003)

    Article  PubMed  CAS  Google Scholar 

  15. Yamada, S., Sugahara, K.: Potential therapeutic application of chondroitin sulfate/dermatan sulfate. Curr. Drug Discov. Technol. 5, 289–301 (2008)

    Article  PubMed  CAS  Google Scholar 

  16. Harab, R.C., Mourao, P.A.: Increase of chondroitin 4-sulfate concentration in the endochondral ossification cartilage of normal dogs. Biochim. Biophys. Acta 992, 237–40 (1989)

    PubMed  CAS  Google Scholar 

  17. Clement, A.M., Nadanaka, S., Masayama, K., Mandl, C., Sugahara, K., Faissner, A.: The DSD-1 carbohydrate epitope depends on sulfation, correlates with chondroitin sulfate D motifs, and is sufficient to promote neurite outgrowth. J. Biol. Chem. 273, 28444–53 (1998)

    Article  PubMed  CAS  Google Scholar 

  18. Clement, A.M., Sugahara, K., Faissner, A.: Chondroitin sulfate E promotes neurite outgrowth of rat embryonic day 18 hippocampal neurons. Neurosci. Lett. 269, 125–8 (1999)

    Article  PubMed  CAS  Google Scholar 

  19. Ueoka, C., Kaneda, N., Okazaki, I., Nadanaka, S., Muramatsu, T., Sugahara, K.: Neuronal cell adhesion, mediated by the heparin-binding neuroregulatory factor midkine, is specifically inhibited by chondroitin sulfate E. Structural and functional implications of the over-sulfated chondroitin sulfate. J. Biol. Chem. 275, 37407–13 (2000)

    Article  PubMed  CAS  Google Scholar 

  20. Deepa, S.S., Umehara, Y., Higashiyama, S., Itoh, N., Sugahara, K.: Specific molecular interactions of oversulfated chondroitin sulfate E with various heparin-binding growth factors. Implications as a physiological binding partner in the brain and other tissues. J. Biol. Chem. 277, 43707–16 (2002)

    Article  PubMed  CAS  Google Scholar 

  21. Heinegard, D.: Polydispersity of cartilage proteoglycans. Structural variations with size and buoyant density of the molecules. J. Biol. Chem. 252, 1980–9 (1977)

    PubMed  CAS  Google Scholar 

  22. Hitchcock, A.M., Yates, K.E., Shortkroff, S., Costello, C.E., Zaia, J.: Optimized extraction of glycosaminoglycans from normal and osteoarthritic cartilage for glycomics profiling. Glycobiology 17, 25–35 (2007)

    Article  PubMed  CAS  Google Scholar 

  23. Smith, P.K., Krohn, R.I., Hermanson, G.T., Mallia, A.K., Gartner, F.H., Provenzano, M.D., et al.: Measurement of protein using bicinchoninic acid. Anal. Biochem. 150, 76–85 (1985)

    Article  PubMed  CAS  Google Scholar 

  24. Bitter, T., Muir, H.M.: A modified uronic acid carbazole reaction. Anal. Biochem. 4, 330–4 (1962)

    Article  PubMed  CAS  Google Scholar 

  25. Yamagata, T., Saito, H., Habuchi, O., Suzuki, S.: Purification and properties of bacterial chondroitinases and chondrosulfatases. J. Biol. Chem. 243, 1523–35 (1968)

    PubMed  CAS  Google Scholar 

  26. Farndale, R.W., Sayers, C.A., Barrett, A.J.: A direct spectrophotometric microassay for sulfated glycosaminoglycans in cartilage cultures. Connect. Tissue Res. 9, 247–8 (1982)

    Article  PubMed  CAS  Google Scholar 

  27. Bigge, J.C., Patel, T.P., Bruce, J.A., Goulding, P.N., Charles, S.M., Parekh, R.B.: Nonselective and efficient fluorescent labeling of glycans using 2-amino benzamide and anthranilic acid. Anal. Biochem. 230, 229–38 (1995)

    Article  PubMed  CAS  Google Scholar 

  28. Livak, K.J., Schmittgen, T.D.: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−delta delta C(T)) method. Methods 25, 402–8 (2001)

    Article  PubMed  CAS  Google Scholar 

  29. Plaas, A.H., Wong-Palms, S., Roughley, P.J., Midura, R.J., Hascall, V.C.: Chemical and immunological assay of the nonreducing terminal residues of chondroitin sulfate from human aggrecan. J. Biol. Chem. 272, 20603–10 (1997)

    Article  PubMed  CAS  Google Scholar 

  30. Calabro, A., Hascall, V.C., Midura, R.J.: Adaptation of FACE methodology for microanalysis of total hyaluronan and chondroitin sulfate composition from cartilage. Glycobiology 10, 283–93 (2000)

    Article  PubMed  CAS  Google Scholar 

  31. Hoshi, K., Ejiri, S., Ozawa, H.: Localizational alterations of calcium, phosphorus, and calcification-related organics such as proteoglycans and alkaline phosphatase during bone calcification. J. Bone Miner. Res. 16, 289–98 (2001)

    Article  PubMed  CAS  Google Scholar 

  32. Rees, S.G., Hughes, W., Embery, G.: Interaction of glucuronic acid and iduronic acid-rich glycosaminoglycans and their modified forms with hydroxyapatite. Biomaterials 23, 481–9 (2002)

    Article  PubMed  CAS  Google Scholar 

  33. Nandini, C.D., Sugahara, K.: Role of the sulfation pattern of chondroitin sulfate in its biological activities and in the binding of growth factors. Adv. Pharmacol. 53, 253–79 (2006)

    Article  PubMed  CAS  Google Scholar 

  34. Trowbridge, J.M., Rudisill, J.A., Ron, D., Gallo, R.L.: Dermatan sulfate binds and potentiates activity of keratinocyte growth factor (FGF-7). J. Biol. Chem. 277, 42815–20 (2002)

    Article  PubMed  CAS  Google Scholar 

  35. Zou, X.H., Jiang, Y.Z., Zhang, G.R., Jin, H.M., Nguyen, T.M., Ouyang, H.W.: Specific interactions between human fibroblasts and particular chondroitin sulfate molecules for wound healing. Acta Biomater. 5, 1588–95 (2009)

    Article  PubMed  CAS  Google Scholar 

  36. Olsen, B.R., Reginato, A.M., Wang, W.: Bone development. Annu. Rev. Cell Dev. Biol. 16, 191–220 (2000)

    Article  PubMed  CAS  Google Scholar 

  37. Ling, L., Murali, S., Dombrowski, C., Haupt, L.M., Stein, G.S., van Wijnen, A.J., et al.: Sulfated glycosaminoglycans mediate the effects of FGF2 on the osteogenic potential of rat calvarial osteoprogenitor cells. J. Cell. Physiol. 209, 811–25 (2006)

    Article  PubMed  CAS  Google Scholar 

  38. Suzuki, A., Palmer, G., Bonjour, J.P., Caverzasio, J.: Catecholamines stimulate the proliferation and alkaline phosphatase activity of MC3T3-E1 osteoblast-like cells. Bone 23, 197–203 (1998)

    Article  PubMed  CAS  Google Scholar 

  39. Kim, H.J., Kim, U.J., Vunjak-Novakovic, G., Min, B.H., Kaplan, D.L.: Influence of macroporous protein scaffolds on bone tissue engineering from bone marrow stem cells. Biomaterials 26, 4442–52 (2005)

    Article  PubMed  CAS  Google Scholar 

  40. Bellahcene, A., Castronovo, V.: Increased expression of osteonectin and osteopontin, two bone matrix proteins, in human breast cancer. Am. J. Pathol. 146, 95–100 (1995)

    PubMed  CAS  Google Scholar 

  41. Miyazaki, T., Miyauchi, S., Tawada, A., Anada, T., Matsuzaka, S., Suzuki, O.: Oversulfated chondroitin sulfate-E binds to BMP-4 and enhances osteoblast differentiation. J. Cell. Physiol. 217, 769–77 (2008)

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The Thailand Research Fund (Research Grant TRG5180017 to PP), Faculty of Medicine, Chiang Mai University and the National Research Council of Thailand jointly funded this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peraphan Pothacharoen.

Additional information

Peraphan Pothacharoen and Kanchanok Kodchakorn Equal Contribution

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pothacharoen, P., Kodchakorn, K. & Kongtawelert, P. Characterization of chondroitin sulfate from deer tip antler and osteogenic properties. Glycoconj J 28, 473–480 (2011). https://doi.org/10.1007/s10719-011-9346-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-011-9346-1

Keywords

Navigation