Skip to main content
Log in

Glycan structures of ocular surface mucins in man, rabbit and dog display species differences

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

The composition of the mucus gel of the tear film reflects the competing needs for transparency, stability, hydration, and protection of the ocular surface. Mucins form the macromolecular scaffolding of this hydrated gel, and glycans decorating these glycoproteins represent a rich source of binding ligands that may both modulate microbial binding and regulate the physicochemical characteristics of the gel. This study compares the structure of O-linked glycans derived from the ocular mucins of three species, to determine whether the ocular surface microenvironment dictates the need for a common pattern of O-linked carbohydrate structures. Ocular mucus aspirates were collected from healthy humans, rabbits and dogs. Mucins were purified using standard protocols. O-glycans were released by hydrazinoloysis and subsequently analysed by a combination of HPLC, exoglycosidase digestions and LC–MS/MS. A total of 12 different O-glycans were identified. In human ocular mucin, the majority were negatively charged and terminated in sialic acid, whilst those from rabbit or dog were mainly neutral and terminated in α 1-2 fucose and/or α 1-3 N-acetylgalactosamine. The glycans were short: the most common structures being tetra-, tri- or disaccharides. Less elaborate glycan structures are encountered at the ocular surface than at many other mucosal surfaces. Species-specific glycan expression is a feature of ocular surface mucins, and has implications for their defensive properties where different microbial and environmental challenges are encountered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Corfield, A., Carrington, S., Hicks, S., Berry, M., Ellingham, R.: Ocular mucins: purification, metabolism and functions. Prog. Retin. Eye Res. 16, 627–656 (1997)

    Article  CAS  Google Scholar 

  2. Gipson, I.K., Hori, Y., Argüeso, P.: Character of ocular surface mucins and their alteration in dry eye disease. Ocul. Surf. 2, 131–148 (2004)

    PubMed  Google Scholar 

  3. Berry, M., Brayshaw, D., McMaster, T.J.: Dynamic molecular resolution imaging of preocular fluid impressions. Br. J. Ophthalmol. 88, 1460–1466 (2004)

    Article  PubMed  CAS  Google Scholar 

  4. Fleiszig, S.M., McNamara, N.A., Evans, D.J.: The tear film and defense against infection. Adv. Exp. Med. Biol. 506, 523–530 (2002)

    PubMed  CAS  Google Scholar 

  5. Hang, H.C., Bertozzi, C.R.: The chemistry and biology of mucin-type O-linked glycosylation. Bioorg. Med. Chem. 13, 5021–5034 (2005)

    Article  PubMed  CAS  Google Scholar 

  6. Paulsen, F.P., Berry, M.S.: Mucins and TFF peptides of the tear film and lacrimal apparatus. Prog. Histochem. Cytochem. 41, 1–53 (2006)

    Article  PubMed  CAS  Google Scholar 

  7. Gipson, I.K.: Distribution of mucins at the ocular surface. Exp. Eye Res. 78, 379–388 (2004)

    Article  PubMed  CAS  Google Scholar 

  8. Gipson, I.K., Inatomi, T.: Cellular origin of mucins of the ocular surface tear film. Adv. Exp. Med. Biol. 438, 221–227 (1998)

    PubMed  CAS  Google Scholar 

  9. Corfield, A.P., Carroll, D., Myerscough, N., Probert, C.S.: Mucins in the gastrointestinal tract in health and disease. Front. Biosci. 6, D1321–D1357 (2001)

    Article  PubMed  CAS  Google Scholar 

  10. Rose, M.C., Voynow, J.A.: Respiratory tract mucin genes and mucin glycoproteins in health and disease. Physiol. Rev. 86, 245–278 (2006)

    Article  PubMed  CAS  Google Scholar 

  11. Lamblin, G., Aubert, J.P., Perini, J.M., et al.: Human respiratory mucins. Eur. Respir. J. 5, 247–256 (1992)

    PubMed  CAS  Google Scholar 

  12. Hollingsworth, M.A., Swanson, B.J.: Mucins in cancer: protection and control of the cell surface. Nat. Rev. Cancer 4, 45–60 (2004)

    Article  PubMed  CAS  Google Scholar 

  13. Bell, S.L., Xu, G., Khatri, I.A., Wang, R., Rahman, S., Forstner, J.F.: N-linked oligosaccharides play a role in disulphide-dependent dimerization of intestinal mucin Muc2. Biochem. J. 373, 893–900 (2003)

    Article  PubMed  CAS  Google Scholar 

  14. Gipson, I.K., Argueso, P.: Role of mucins in the function of the corneal and conjunctival epithelia. Int. Rev. Cytol. 231, 1–49 (2003)

    Article  PubMed  CAS  Google Scholar 

  15. Hanisch, F.G.: O-glycosylation of the mucin type. Biol. Chem. 382, 143–149 (2001)

    Article  PubMed  CAS  Google Scholar 

  16. Varki, A.: Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 3, 97–130 (1993)

    Article  PubMed  CAS  Google Scholar 

  17. Gagneux, P., Varki, A.: Evolutionary considerations in relating oligosaccharide diversity to biological function. Glycobiology 9, 747–755 (1999)

    Article  PubMed  CAS  Google Scholar 

  18. Dennis, J.W., Granovsky, M., Warren, C.E.: Protein glycosylation in development and disease. Bioessays 21, 412–421 (1999)

    Article  PubMed  CAS  Google Scholar 

  19. Drickamer, K., Taylor, M.E.: Evolving views of protein glycosylation. Trends Biochem. Sci. 23, 321–324 (1998)

    Article  PubMed  CAS  Google Scholar 

  20. Hazlett, L., Rudner, X., Masinick, S., Ireland, M., Gupta, S.: In the immature mouse, Pseudomonas aeruginosa pili bind a 57-kd (alpha 2-6) sialylated corneal epithelial cell surface protein: a first step in infection. Invest. Ophthalmol. Vis. Sci. 36, 634–643 (1995)

    PubMed  CAS  Google Scholar 

  21. Rudner, X.L., Zheng, Z., Berk, R.S., Irvin, R.T., Hazlett, L.D.: Corneal epithelial glycoproteins exhibit Pseudomonas aeruginosa pilus binding activity. Invest. Ophthalmol. Vis. Sci. 33, 2185–2193 (1992)

    PubMed  CAS  Google Scholar 

  22. Fleiszig, S.M., Zaidi, T.S., Pier, G.B.: Mucus and Pseudomonas aeruginosa adherence to the cornea. Adv. Exp. Med. Biol. 350, 359–362 (1994)

    PubMed  CAS  Google Scholar 

  23. Chen, C.P., Song, S.C., Gilboa-Garber, N., Chang, K.S., Wu, A.M.: Studies on the binding site of the galactose-specific agglutinin PA-IL from Pseudomonas aeruginosa. Glycobiology 8, 7–16 (1998)

    Article  PubMed  CAS  Google Scholar 

  24. Gilboa-Garber, N.: Pseudomonas aeruginosa lectins as a model for lectin production, properties, applications and functions. Zentralbl. Bakteriol. Mikrobiol. Hyg. [A] 270, 3–15 (1988)

    CAS  Google Scholar 

  25. Wenneras, C., Neeser, J.R., Svennerholm, A.M.: Binding of the fibrillar CS3 adhesin of enterotoxigenic Escherichia coli to rabbit intestinal glycoproteins is competitively prevented by GalNAc beta 1-4Gal-containing glycoconjugates. Infect. Immun. 63, 640–646 (1995)

    PubMed  CAS  Google Scholar 

  26. Stins, M.F., Prasadarao, N.V., Ibric, L., Wass, C.A., Luckett, P., Kim, K.S.: Binding characteristics of S fimbriated Escherichia coli to isolated brain microvascular endothelial cells. Am. J. Pathol. 145, 1228–1236 (1994)

    PubMed  CAS  Google Scholar 

  27. Sharon, N., Lis, H.: Microbial lectins and their receptors. In: Montreuil, J., Vliegenthart, J.F.G., Schachter, H. (eds.) Glycoproteins II, pp. 475–506. Elsevier, Amsterdam (1997)

    Chapter  Google Scholar 

  28. Carrington, S.D., Hicks, S.J., Corfield, A.P., et al.: Structural analysis of secreted ocular mucins in canine dry eye. Adv. Exp. Med. Biol. 438, 253–263 (1998)

    PubMed  CAS  Google Scholar 

  29. Berry, M., Ellingham, R.B., Corfield, A.P.: Polydispersity of normal human conjunctival mucins. Invest. Ophthalmol. Vis. Sci. 37, 2559–2571 (1996)

    PubMed  CAS  Google Scholar 

  30. Argueso, P., Herreras, J.M., Calonge, M., Citores, L., Pastor, J.C., Girbes, T.: Analysis of human ocular mucus: effects of neuraminidase and chitinase enzymes. Cornea 17, 200–207 (1998)

    PubMed  CAS  Google Scholar 

  31. Chao, C.C., Butala, S.M., Herp, A.: Studies on the isolation and composition of human ocular mucin. Exp. Eye Res. 47, 185–196 (1988)

    Article  PubMed  CAS  Google Scholar 

  32. Hicks, S.J., Carrington, S.D., Kaswan, R.L., Adam, S., Bara, J., Corfield, A.P.: Demonstration of discrete secreted and membrane-bound ocular mucins in the dog. Exp. Eye Res. 64, 597–607 (1997)

    Article  PubMed  CAS  Google Scholar 

  33. Ellingham, R.B., Berry, M., Stevenson, D., Corfield, A.P.: Secreted human conjunctival mucus contains MUC5AC glycoforms. Glycobiology 9, 1181–1189 (1999)

    Article  PubMed  CAS  Google Scholar 

  34. Royle, L., Mattu, T.S., Hart, E., et al.: An analytical and structural database provides a strategy for sequencing O-glycans from microgram quantities of glycoproteins. Anal. Biochem. 304, 70–90 (2002)

    Article  PubMed  CAS  Google Scholar 

  35. Patel, T., Bruce, J., Merry, A., et al.: Use of hydrazine to release in intact and unreduced form both N- and O-linked oligosaccharides from glycoproteins. Biochemistry 32, 679–693 (1993)

    Article  PubMed  CAS  Google Scholar 

  36. Merry, A.H., Neville, D.C., Royle, L., et al.: Recovery of intact 2-aminobenzamide-labeled O-glycans released from glycoproteins by hydrazinolysis. Anal. Biochem. 304, 91–99 (2002)

    Article  PubMed  CAS  Google Scholar 

  37. Garcher, C., Bara, J., Bron, A., Oriol, R.: Expression of mucin peptide and blood group ABH- and Lewis-related carbohydrate antigens in normal human conjunctiva. Invest. Ophthalmol. Vis. Sci. 35, 1184–1191 (1994)

    PubMed  CAS  Google Scholar 

  38. Berry, M., Corfield, A.P., Harris, A., Khan-Lim, D.: Functional processing of ocular mucins. Adv. Exp. Med. Biol. 506, 283–288 (2002)

    PubMed  CAS  Google Scholar 

  39. Aknin, M.-L.R., Berry, M., Dick, A., Khan-Lim, D.: Normal but not altered mucins activate neutrophils. Cell Tissue Res. 318, 545–551 (2004)

    Article  PubMed  CAS  Google Scholar 

  40. Varki, A., Angata, T.: Siglecs—the major subfamily of I-type lectins. Glycobiology 16, 1R–27R (2006)

    Article  PubMed  CAS  Google Scholar 

  41. Sperandio, M.: Selectins and glycosyltransferases in leukocyte rolling in vivo. FEBS J. 273, 4377–4389 (2006)

    Article  PubMed  CAS  Google Scholar 

  42. Varki, A.: Sialic acids as ligands in recognition phenomena. FASEB J. 11, 248–255 (1997)

    PubMed  CAS  Google Scholar 

  43. Hirmo, S., Kelm, S., Schauer, R., Nilsson, B., Wadstrom, T.: Adhesion of Helicobacter pylori strains to alpha-2,3-linked sialic acids. Glycoconj. J. 13, 1005–1011 (1996)

    Article  PubMed  CAS  Google Scholar 

  44. Angata, T., Varki, A.: Chemical diversity in the sialic acids and related alpha-keto acids: an evolutionary perspective. Chem. Rev. 102, 439–469 (2002)

    Article  PubMed  CAS  Google Scholar 

  45. Kelm, S., Schauer, R.: Sialic acids in molecular and cellular interactions. Int. Rev. Cytol. 175, 137–240 (1997)

    Article  PubMed  CAS  Google Scholar 

  46. Hooper, L.V., Gordon, J.I.: Glycans as legislators of host–microbial interactions: spanning the spectrum from symbiosis to pathogenicity. Glycobiology 11, 1R–10R (2001)

    Article  PubMed  CAS  Google Scholar 

  47. Gagneux, P., Cheriyan, M., Hurtado-Ziola, N., et al.: Human-specific regulation of alpha 2-6-linked sialic acids. J. Biol. Chem. 278, 48245–48250 (2003)

    Article  PubMed  CAS  Google Scholar 

  48. Alexander, D.A., Dimock, K.: Sialic acid functions in enterovirus 70 binding and infection. J. Virol. 76, 11265–11272 (2002)

    Article  PubMed  CAS  Google Scholar 

  49. Olofsson, S., Kumlin, U., Dimock, K., Arnberg, N.: Avian influenza and sialic acid receptors: more than meets the eye? Lancet Infect. Dis. 5, 184–188 (2005)

    PubMed  CAS  Google Scholar 

  50. Wu, E., Fernandez, J., Fleck, S.K., Von Seggern, D.J., Huang, S., Nemerow, G.R.: A 50-kDa membrane protein mediates sialic acid-independent binding and infection of conjunctival cells by adenovirus type 37. Virology 279, 78–89 (2001)

    Article  PubMed  CAS  Google Scholar 

  51. Aristoteli, L.P., Willcox, M.D.: The adhesion of Pseudomonas aeruginosa to high molecular weight human tear film species corresponds to glycoproteins reactive with Sambucus nigra lectin. Exp. Eye Res. 83, 1146–1153 (2006)

    Article  PubMed  CAS  Google Scholar 

  52. Sack, R.A., Beaton, A., Sathe, S., Morris, C., Willcox, M., Bogart, B.: Towards a closed eye model of the pre-ocular tear layer. Prog. Retin. Eye Res. 19, 649–668 (2000)

    Article  PubMed  CAS  Google Scholar 

  53. Sack, R.A., Nunes, I., Beaton, A., Morris, C.: Host-defense mechanism of the ocular surfaces. Biosci. Rep. 21, 463–480 (2001)

    Article  PubMed  CAS  Google Scholar 

  54. Sack, R.A., Bogart, B.I., Beaton, A., Sathe, S., Lew, G.: Diurnal variations in tear glycoproteins: evidence for an epithelial origin for the major non-reducible > or =450 kDa sialoglycoprotein(s). Curr. Eye Res. 16, 577–588 (1997)

    Article  PubMed  CAS  Google Scholar 

  55. Jass, J.R., Smith, M.: Sialic acid and epithelial differentiation in colorectal polyps and cancer—a morphological, mucin and lectin histochemical study. Pathology 24, 233–242 (1992)

    Article  PubMed  CAS  Google Scholar 

  56. Corfield, A.P., Wagner, S.A., Clamp, J.R., Kriaris, M.S., Hoskins, L.C.: Mucin degradation in the human colon: production of sialidase, sialate O-acetylesterase, N-acetylneuraminate lyase, arylesterase, and glycosulfatase activities by strains of fecal bacteria. Infect. Immun. 60, 3971–3978 (1992)

    PubMed  CAS  Google Scholar 

  57. Corfield, A.P., Donapaty, S.R., Carrington, S.D., Hicks, S.J., Schauer, R., Kohla, G.: Identification of 9-O-acetyl-N-acetylneuraminic acid in normal canine pre-ocular tear film secreted mucins and its depletion in Keratoconjunctivitis sicca. Glycoconj. J. 22, 409–416 (2005)

    Article  PubMed  CAS  Google Scholar 

  58. Argueso, P., Sumiyoshi, M.: Characterization of a carbohydrate epitope defined by the monoclonal antibody H185: sialic acid O-acetylation on epithelial cell-surface mucins. Glycobiology 16, 1219–1228 (2006)

    Article  PubMed  CAS  Google Scholar 

  59. Prado, M.R., Rocha, M.F., Brito, E.H., et al.: Survey of bacterial microorganisms in the conjunctival sac of clinically normal dogs and dogs with ulcerative keratitis in Fortaleza, Ceara, Brazil. Vet. Ophthalmol. 8, 33–37 (2005)

    Article  PubMed  Google Scholar 

  60. Cooper, S.C., McLellan, G.J., Rycroft, A.N.: Conjunctival flora observed in 70 healthy domestic rabbits (Oryctolagus cuniculus). Vet. Rec. 149, 232–235 (2001)

    PubMed  CAS  Google Scholar 

  61. McDonald, P., Watson, A.: Microbial flora of normal canine conjunctivae. J. Small Anim. Pract. 17, 809–812 (1976)

    Article  PubMed  CAS  Google Scholar 

  62. Urban, M., Wyman, M., Rheins, M., Marraro, R.: Conjunctival flora of clinically normal dogs. J. Am. Vet. Med. Assoc. 161, 201–207 (1972)

    PubMed  CAS  Google Scholar 

  63. Deeb, B.J., DiGiacomo, R.F.: Respiratory diseases of rabbits. Vet. Clin. North Am. Exot. Anim. Pract. 3, 465–480 (2000), vi–vii

    PubMed  CAS  Google Scholar 

  64. Loliger, H.C., Matthes, S.: Infectious factor diseases in domestic small animals (carnivorous and herbivorous fur animals, wool and meat rabbits. Berl. Munch. Tierarztl. Wochenschr. 102, 364–371 (1989)

    PubMed  CAS  Google Scholar 

  65. McNamara, N.A., Andika, R., Kwong, M., Sack, R.A., Fleiszig, S.M.: Interaction of Pseudomonas aeruginosa with human tear fluid components. Curr. Eye Res. 30, 517–525 (2005)

    Article  PubMed  CAS  Google Scholar 

  66. Fleiszig, S.M., Zaidi, T.S., Ramphal, R., Pier, G.B.: Modulation of Pseudomonas aeruginosa adherence to the corneal surface by mucus. Infect. Immun. 62, 1799–1804 (1994)

    PubMed  CAS  Google Scholar 

  67. Rhim, A.D., Stoykova, L., Glick, M.C., Scanlin, T.F.: Terminal glycosylation in cystic fibrosis (CF): a review emphasizing the airway epithelial cell. Glycoconj. J. 18, 649–659 (2001)

    Article  PubMed  CAS  Google Scholar 

  68. Trivier, D., Houdret, N., Courcol, R.J., Lamblin, G., Roussel, P., Davril, M.: The binding of surface proteins from Staphylococcus aureus to human bronchial mucins. Eur. Respir. J. 10, 804–810 (1997)

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of The Oxford Glycobiology Institute Endowment, and Brian Matthews for his expert assistance with the hydrazinolysis procedures, and Sally Hicks for help with Mucin purification.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen D. Carrington.

Additional information

Louise Royle and Elizabeth Matthews contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Royle, L., Matthews, E., Corfield, A. et al. Glycan structures of ocular surface mucins in man, rabbit and dog display species differences. Glycoconj J 25, 763–773 (2008). https://doi.org/10.1007/s10719-008-9136-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-008-9136-6

Keywords

Navigation