Skip to main content
Log in

Unglycosylation at Asn-633 made extracellular domain of E-cadherin folded incorrectly and arrested in endoplasmic reticulum, then sequentially degraded by ERAD

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

The human E-cadherin is a single transmembrane domain protein involved in Ca2+-dependent cell–cell adhesion. In a previous study, we demonstrated that all of four potential N-glycosylation sites in E-cadherin are occupied by N-glycans in human breast carcinoma cells in vivo and the elimination of N-glycan at Asn-633 dramatically affected E-cadherin expression and made it degraded. In this study we investigated the molecular mechanism of E-cadherin, which lacks N-glycosylation at Asn-633 (M4), degradation and the role of the N-glycan at Asn-633 in E-cadherin folding. We treated cells stably expressed M4 E-cadherin with MG123, DMM, respectively. Either MG132 or DMM could efficiently block degradation of M4 E-cadherin. M4 E-cadherin was recognized as the substrate of ERAD and was retro-translocated from ER lumen to cytoplasm by p97. It was observed that the ration of M4 E-cadherin binding to calnexin was significantly increased compared with that of other variants, suggesting that it was a misfolded protein, though cytoplasmic domain of M4 E-cadherin could associate with β-catenin. Furthermore, we found that N-glycans of M4 E-cadherin were modified in immature high mannose type, suggesting that it could not depart to Golgi apparatus. In conclusion, this study revealed that N-glycosylation at Asn-633 is essential for E-cadherin expression, folding and trafficking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

EC:

extracellular domain

AJs:

adherence junction complexes

ER:

endoplasmic reticulum

ERAD:

endoplasmic reticulum-associated degradation

WT:

wild type E-cadherin

M1:

E-cadherin lacking N-glycan at Asn-554 site

M2:

E-cadherin lacking N-glycan at Asn-566 site

M3:

E-cadherin lacking N-glycan at Asn-618 site

M4:

E-cadherin lacking N-glycan at Asn-633 site

M123:

E-cadherin has a single N-glycan at Asn-633 site

Endo H:

endoglycosidase

PNGase F:

peptide N-glycosidase F

PBS:

phosphate-buffered saline

References

  1. Takeichi, M.: Cadherin cell adhesion receptors as a morphogenetic regulator. Science 251, 1451–1455 (1991)

    Article  PubMed  CAS  Google Scholar 

  2. Kemler, R.: From cadherins to catenins: cytoplasmic protein interactions and regulation of cell adhesion. Trends Genet. 9, 317–321 (1993)

    Article  PubMed  CAS  Google Scholar 

  3. Pokutta, S., Herrenknecht, K., Kemler, R., Engel, J.: Conformational changes of the recombinant extracellular domain of E-cadherin upon calcium binding. Eur. J. Biochem. 223, 1019–1026 (1994)

    Article  PubMed  CAS  Google Scholar 

  4. Ozawa, M., Engel, J., Kemler, R.: Single amino acid substitutions in one Ca2+ binding site of uvomorulin abolish the adhesive function. Cell 63, 1033–1038 (1990)

    Article  PubMed  CAS  Google Scholar 

  5. Kemler, R., Ozawa, M.: Uvomorulin–catenin complex: cytoplasmic anchorage of a calcium-dependent cell adhesion molecule. Bioessays 11, 88–91 (1989)

    Article  PubMed  CAS  Google Scholar 

  6. Ozawa, M.R., Ringwald, M., Kemler, R.: Uvomorulin–catenin complex formation is regulated by a specific domain in the cytoplasmic region of the cell adhesion molecule. Proc. Natl. Acad. Sci. U. S. A. 87, 4246–4250 (1990)

    Article  PubMed  CAS  Google Scholar 

  7. Reynolds, A.B., Daniel, J., McCrea, P.D., Wheelock, M.J., Wu, J., Zhang, Z.: Identification of a new catenin: the tyrosine kinase substrate p120cas associates with E-cadherin complexes. Mol. Cell. Biol. 14, 8333–8342 (1994)

    PubMed  CAS  Google Scholar 

  8. Hinck, L., Näthke, I.S., Papkoff, J., Nelson, W.J.: Dynamics of cadherin/catenin complex formation novel: protein interactions and pathways of complex assembly. J. Cell Biol. 125, 1327–1340 (1994)

    Article  PubMed  CAS  Google Scholar 

  9. Wheelock, M.J., Johnson, K.R.: Cadherin-mediated cellular signaling. Curr. Opin. Cell Biol. 15, 509–514 (2003)

    Article  PubMed  CAS  Google Scholar 

  10. Thoreson, M.A., Anastasiadis, P.Z., Daniel, J.M., Ireton, R.C., Wheelock, M.J., Johnson, K.R., Hummingbird, D.K., Reynolds, A.B.: Selective uncoupling of p120ctn from E-cadherin disrupts strong adhesion. J. Cell Biol. 148, 189–201 (2000)

    Article  PubMed  CAS  Google Scholar 

  11. Ozawa, M., Ohkubo, T.: Tyrosine phosphorylation of p120(ctn) in v-Src transfected L cells depends on its association with E-cadherin and reduces adhesion activity. J. Cell Sci. 114, (3), 503–512 (2001)

    PubMed  CAS  Google Scholar 

  12. Nose, A., Tsuji, K., Takeichi, M.: Localization of specificity determining sites in cadherin cell adhesion molecules. Cell 61, (1), 147–155 (1990)

    Article  PubMed  CAS  Google Scholar 

  13. Nagar, B., Overduin, M., Ikura, M., Rini, J.M.: Structural basis of calcium-induced E-cadherin rigidification and dimerization. Nature 380, 360–364 (1996)

    Article  PubMed  CAS  Google Scholar 

  14. Ozawa, M.: Lateral dimerization of the E-cadherin extracellular domain is necessary but not sufficient for adhesive activity. J. Biol. Chem. 227, 19600–19608 (2002)

    Article  Google Scholar 

  15. Yoshimura, M., Ihara, Y., Masuzawa, Y., Taniguchi, N.: Aberrant glycosylation of E-cadherin enhances cell–cell binding to suppress metastasis. J. Biol. Chem. 271, 13811–13815 (1996)

    Article  PubMed  CAS  Google Scholar 

  16. Kitada, T., Miyoshi, E., Noda, K., Higashiyama, S., Ihara, H., Matsuura, N., Hayashi, N., Kawata, S., Matsuzawa, Y., Taniguchi, N.: The addition of bisecting N-acetylglucosamine residues to E-cadherin down-regulates the tyrosine phosphorylation of b-catenin. J. Biol. Chem. 276, 475–480 (2000)

    Article  Google Scholar 

  17. Liwosz, A., Lei, T., Kukuruzinska, M.A.: N-glycosylation affects the molecular organization and stability of E-cadherin junctions. J. Biol. Chem. 281, 23138–23149 (2006)

    Article  PubMed  CAS  Google Scholar 

  18. Parodi, A.J.: Protenin glucosylation and its role in protein folding. Annu. Rev. Biochem. 69, 69–93 (2000)

    Article  PubMed  CAS  Google Scholar 

  19. Tokunaga, F., Brostrom, C., Koide, T., Arvan, P.: Endoplasmic reticulum (ER)-associated degradation of misfolded N-linked glycoproteins is suppressed upon inhibitor of ER mannosidase I. J. Biol. Chem. 275, 40757–40764 (2000)

    Article  PubMed  CAS  Google Scholar 

  20. Hirsh, C., Jarosch, E., Sommer, T., Wolf, D.H.: Endoplasmic reticulum-associated protein degradation—one model fits all? Biochim. Biophys. Acta 1695, 208–216 (2004)

    Google Scholar 

  21. Ruddock, L.W., Molinari, M.: N-glycan processing in ER quality control. J. Cell Sci. 119, 4373–4380 (2006)

    Article  PubMed  CAS  Google Scholar 

  22. Kleizen, B., Braakman, L.: Protein folding and quality control in the endoplasmic reticulum. Curr. Opin. Cell Biol. 16, 343–349 (2004)

    Article  PubMed  CAS  Google Scholar 

  23. Nishkawa, S., Brodsky, J.L., Nakatsukasa, K.: Roles of molecular chaperones in endoplasmic reticulum (ER) quality control and ER-associated degradation(ERAD). J. Biochem. 137, 551–555 (2005)

    Article  Google Scholar 

  24. Lee, M.C., Miller, E.A., Goldberg, J., Orci, L., Schekman, R.: Bi-directional protein transport between the ER and Golgi. Annu. Rev. Cell Dev. Biol. 20, 87–123 (2004)

    Article  PubMed  CAS  Google Scholar 

  25. Watanabe, R., Riezman, H.: Differential ER exit in yeast and mammalian cells. Curr. Opin. Cell Biol. 16, 350–355 (2004)

    Article  PubMed  CAS  Google Scholar 

  26. Ritter, C., Helenius, A.: Recognition of local glycoprotein misfolding by the ER folding sensor UDP-glucose:glycoprotein glucosyltransferase. Nat. Struct. Biol. 7, 278–280 (2000)

    Article  PubMed  CAS  Google Scholar 

  27. Taylor, S.C., Ferguson, A.D., Bergeron, J.J.M., Thomas, D.Y.: The ER protein folding sensor UDP-glucose glycoprotein-glucosyltransferase modifies substrates distant to local changes in glycoprotein conformation. Nat. Struct. Mol. Biol. 11, 128–134 (2004)

    Article  PubMed  CAS  Google Scholar 

  28. Hosokawa, N., Tremblay, L.O., You, Z., Herscovics, A., Wada, I., Nagata, K.: Enhancement of endoplasmic reticulum (ER) degradation of misfolded Null Hong Kong a1-antitrypsin by human ER mannosidase I. J. Biol. Chem. 278, 26287–26294 (2003)

    Article  PubMed  CAS  Google Scholar 

  29. Frenkel, Z., Gregory, W., Kornfeld, S., Lederkremer, G.Z.: Endoplasmic reticulum-associated degradation of mammalian glycoproteins involves sugar chain trimming to Man6-5GlcNAc2. J. Biol. Chem. 278, 34119–34124 (2003)

    Article  PubMed  CAS  Google Scholar 

  30. Hitt, R., Wolf, D.H.: DER7, encoding a-glucosidase I is essential for degradation of malfolded glycoproteins of the endoplasmic reticulum. FEMS Yeast Research 4, 815–820 (2004)

    Article  PubMed  CAS  Google Scholar 

  31. Mast, S.W., Diekman, K., Karaveg, K., Davis, A., Sifers, R.N., Moremen, K.W.: Human EDEM2, a novel homolog of family 47 glycosidases, is involved in ER-associated degradation of glycoproteins. Glycobiology 15, 421–436 (2005)

    Article  PubMed  CAS  Google Scholar 

  32. Hirao, K., Natsuka, Y., Tamura, T., Wada, I., Morito, D., Natsuka, S., Romero, P., Sleno, B., Tremblay, L.O.: EDEM3, a soluble EDEM homolog, enhances glycoprotein ERAD and mannose trimming. J. Biol. Chem. 281, 9650–9658 (2006)

    Article  PubMed  CAS  Google Scholar 

  33. Spiro, R.G.: Role of N-linked polymannose oligosaccharides in targeting glycoproteins for endoplasmic reticulum-associated degradation. Cell. Mol. Life Sci. 61, 1025–1041 (2004)

    Article  PubMed  CAS  Google Scholar 

  34. Lederkremer, G.Z., Glickman, M.H.: A window of opportunity: timing protein degradation by trimming of sugars and ubiquitins. Trends Biochem. Sci. 30, 297–303 (2005)

    Article  PubMed  CAS  Google Scholar 

  35. Rabinovich, E., Kerem, A., Fröhlich, K.-U., Diamant, N., Bar-Nun, S.: AAA-ATPase p97/Cdc48p, a cytosolic chaperone required for endoplasmic reticulum-associated protein degradation. Mol. Cell. Biol. 22, 626–634 (2002)

    Article  PubMed  CAS  Google Scholar 

  36. Ye, Y., Shibata, Y., Yun, C., Ron, D., Rapoport, T.A.: A membrane protein complex mediates retro-translocation from the ER lumen into the cytosol. Nature 429, 841–847 (2004)

    Article  PubMed  CAS  Google Scholar 

  37. Richly, H., Rape, M., Braun, S., Rumpf, S., Hoege, C., Jentsch, S.: A series of ubiquitin binding factors connects CDC48/p97 to substrate multiubiquitylation and proteasomal targeting. Cell 120, 73–84 (2005)

    Article  PubMed  CAS  Google Scholar 

  38. Zhao, H.B., Liang, Y.L., Xu, Z.B., Wang, L.Y., Zhou, F., Li, Z.X., Jin, J.W., Yang, Y., Fang, Z.Y., Hu, Y.L., Zhang, L.N., Su, J.M., Zha, X.L.: N-glycosylation affects the adhesive function of E-cadherin through modifying the composition of adherens junctions (AJs) in human breast carcinoma cell line MDA-MB-435. J. Cell. Biochem. 104(1), 162–175 (2008)

    Article  PubMed  CAS  Google Scholar 

  39. Wang, L., Liang, Y., Li, X., Cai, X., Zhang, W., Wu, G., Jin, J., Fang, Z., Zha, V.: Increase in beta1-6 GlcNAc branching caused by N-acetylglucosaminyltransferase V directs integrin beta1 stability in human hepatocellular carcinoma cell line SMMC-7721. J. Cell. Biochem. 100, 230–241 (2007)

    Article  PubMed  CAS  Google Scholar 

  40. Yoshida, H.: ER stress and diseases. FEBS 274, 630–658 (2007)

    Article  CAS  Google Scholar 

  41. Wójcik, C., Rowicka, M., Kudlicki, A., Nowis, D., McConnel, E., Kujawa, M., DeMartino, G.N.: VCP (valosin-containing protein, p97) is a regulator of ER stress and of the degradation of N-end rule and UFD (ubiquitin-fusion degradation) pathway substrates in mammalian cells. Mol. Cell. Biol. 17, 4606–4618 (2006)

    Article  Google Scholar 

  42. Chen, Y.-T., Stewart, D.B., Nelson, W.J.: Coupling assembly of the E-cadherin/b-catenin complex to efficient endoplasmic reticulum exit and basal–lateral membrane targeting of E-cadherin in polarized MDCK cells. J. Cell Biol. 144, 687–699 (1999)

    Article  PubMed  CAS  Google Scholar 

  43. Kyte, J., Doolittle, R.F.: A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157, 105–132 (1982)

    Article  PubMed  CAS  Google Scholar 

  44. Marambaud, P., Shioi, J., Serban, G., Georgakopoulos, A., Sarner, S., Nagy, V., Baki, L., Wen, P., Efthimiopoulos, S., Shao, Z., Wisniewski, T., Robakis, N.K.: A presenilin-1/g-secretase cleavage releases the E-cadherin intracellular domain and regulates disassembly of adherens junctions. EMBO. J. 21, 1948–1956 (2001)

    Article  Google Scholar 

  45. Kim, D.Y., Ingano, M.L.A., Kovacs, D.M.: Nectin-1a, an immunoglobulin-like receptor involved in the formation of synapses, is a substrate for presenilin/g-secretase-like cleavage. J. Biol. Chem. 277, 49976–49981 (2002)

    Article  PubMed  CAS  Google Scholar 

  46. Häussinger, D., Ahrens, T., Aberle, T., Engel, J., Stetefeld, J., Grzesiek, S.: Proteolytic E-cadherin activation followed by solution NMR and X-ray crystallography. EMBO. J. 23, 1699–1708 (2004)

    Article  PubMed  Google Scholar 

  47. Le, T.L., Yap, A.S., Stow, J.L.: Recycling of E-cadherin: a potential mechanism for regulating cadherin dynamics. J. Cell Biol. 146, 219–232 (1999)

    PubMed  CAS  Google Scholar 

  48. Fujita, Y., Krause, G., Scheffner, M., Zechnner, D., Leddy, H.E., Behrens, J., Sommer, T., Birchmeier, W.: Hakai, a c-CbI-like protein, ubiquitinates and induces endocytosis of the E-cadherin complex. Nature Cell Biol. 4, 222–231 (2002)

    Article  PubMed  CAS  Google Scholar 

  49. Ioannou, Y.A., Zeidner, K.M., Grace, M.E., Desnick, R.J.: Human a-galactosidase A: glycosylation site 3 is essential for enzyme solubility. Biochem. J. 332, 789–797 (1998)

    PubMed  CAS  Google Scholar 

  50. Isaji, T., Sato, Y., Zhao, Y., Miyoshi, E., Wada, Y., Taniguchi, N., Gu, J.: N-glycosylation of the b-propeller domain of the integrin a5 subunit is essential for a5b1 heterodimerization, expression on the cell surface and its biological function. J. Biol. Chem. 281, 33258–33267 (2006)

    Article  PubMed  CAS  Google Scholar 

  51. Kane, S.: Mouse procathepsin L lacking a functional glycosylation site is properly folded, stable, and secreted by NIH 3T3 cells. J. Biol. Chem. 268, (15), 11456–11462 (1993)

    PubMed  CAS  Google Scholar 

  52. Rohl, C.A., Strauss, C.E.M., Chivian, D., Baker, D.: Modeling structurally variable regions in homologous proteins with Rosetta. Proteins 55, 656–677 (2004)

    Article  PubMed  CAS  Google Scholar 

  53. Wang, X., Matteson, J., An, Y., Moyer, B., Yoo, J.-S., Bannykh, S., Wilson, L.A., Riordan, J.R., Balch, W.E.: COPII-dependent export of cystic fibrosis transmembrane conductance regulator from the ER uses a di-acidic exit code. J. Cell Biol. 167, 65–74 (2004)

    Article  PubMed  CAS  Google Scholar 

  54. Le, A., Graham, K.S., Sifers, R.N.: Intracellular degradation of the transport-impaired human PiZ alpha 1-antitrypsin variant. Biochemical mapping of the degradative event among compartments of the secretory pathway. J. Biol. Chem. 265, 14001–14007 (1990)

    PubMed  CAS  Google Scholar 

  55. Caldwell, S.R., Hill, K.J., Cooper, A.A.: Degradation of endoplasmic reticulum (ER) quality control substrates requires transport between the ER and Golgi. J. Biol. Chem. 276, 23296–23303 (2001)

    Article  PubMed  CAS  Google Scholar 

  56. Vashist, S., Ng, D.T.W.: Misfolded proteins are sorted by a sequential checkpoint mechanism of ER quality control. J. Cell Biol. 165, 41–52 (2004)

    Article  PubMed  CAS  Google Scholar 

  57. Kincaid, M.M., Copper, A.A.: Misfolded proteins traffic from the endoplasmic reticulum (ER) due to ER export signals. Mol. Biol. Cell 18, 455–463 (2007)

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Shanghai Leading Academic Disciplines Project, Project Number: B110, National Nature Science Foundation of China, No 30670468 and the Grant of Shanghai Health Bureau, No. 044083.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiliang Zha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, F., Su, J., Fu, L. et al. Unglycosylation at Asn-633 made extracellular domain of E-cadherin folded incorrectly and arrested in endoplasmic reticulum, then sequentially degraded by ERAD. Glycoconj J 25, 727–740 (2008). https://doi.org/10.1007/s10719-008-9133-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-008-9133-9

Keywords

Navigation