Skip to main content

Advertisement

Log in

Dispersion Hardening of Composites in the System Aluminum Oxide and Cerium Cation Stabilized Tetragonal Zirconium Dioxide

  • Published:
Glass and Ceramics Aims and scope Submit manuscript

The production of composites based on nanopowders synthesized by the sol-gel method in the system aluminum oxide and tetragonal zirconium dioxide stabilized by cerium cations (Al2O3–[Ce–TZP]) is described. It is shown that modification of the compositions by calcium oxide promotes the formation of composites of a dispersion-hardening phase in the form of long-prismatic grains in the sintering process. The presence of this phase affects the increase of strength and resistance to brittle fracture of composites with a ZrO2 matrix and with an Al2O3 matrix. The strength in static bending of the composites reaches 1000 MPa and the cracking resistance K 1c increases to 11.0 MPa·m1/2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Notes

  1. Here and below, content by weight, %.

References

  1. V. Ya. Shevchenko and S. M. Barinov, Technical Ceramics [in Russian], Nauka, Moscow (1993).

  2. S. M. Barinov and V. Ya. Shevchenko, Strength of Technical Ceramics [in Russian], Nauka, Moscow (1996).

    Google Scholar 

  3. A. P. Garshin, V. M. Gropyanov, G. P. Zaitsev, and S. S. Semenov, Ceramics for Machine Engineering [in Russian], Nauchtekhlittzdat, Moscow (2003).

    Google Scholar 

  4. V. I. Putlyaev, “Modern bioceramic materials,” Sorovskii Obraz. Zh., 8(1), 44 – 50 (2004).

    Google Scholar 

  5. V. S. Bakunov, A. V. Belyakov, E. S. Lukin, and Y. Sh. Shayakhmetov, Oxide Ceramics: Sintering and Creep [in Russian], RKhTU im. D. I. Mendeleeva, Moscow (2007).

  6. A. H. De Aza, J. Chevalier, G. Fantozzi, et al., “Crack growth resistance of alumina, zirconia toughened alumina ceramics for joint prostheses,” Biomaterials, 23(3), 937 – 945 (2002).

    Article  Google Scholar 

  7. S. Kikkawa, A. Kijima, K. Hirota, and O. Yamamoto, “Crystal structure of zirconia prepared with alumina by coprecipatation preparation method,” J. Am. Ceram. Soc., 85(3), 721 – 723 (2002).

    Article  Google Scholar 

  8. S. J. Lee, S. Y. Chun, and C. H. Lee, “In situ fabrication of multicomponent ceramic composites by steric organic entrapment route,” J. Mater. Lett., 58, 2646 – 2649 (2004).

    Article  Google Scholar 

  9. C. Piconi, G. Maccauro, and F. Muratori, “Alumina matrix composites in arthroplasty,” Key Eng. Mater., 284 – 286, 979 – 982 (2005).

    Article  Google Scholar 

  10. L. I. Podzorova, A. A. Il’icheva, L. I. Shvorneva, et al., “Phase formation of nanosized precursors t-ZrO2–Al2O3 Ceramic microstructure and formation of microstructure of the ceramic on their basis,” Fiz. Khim. Stekla, 33(5), 703 – 709 (2007).

    Google Scholar 

  11. N. L. Savchenko, P. V. Korolev, A. G. Mel’nikov, et al., “Structure and mechanical properties of sintered composites based on ZrO2–Y2O3–Al2O3,” Fundam. Probl. Sovr. Materialoved., 5(1), 4 (2008).

    Google Scholar 

  12. G. Maccauro, R. Rossi, L. Raffaelli, and P. F. Manicone, “Alumina and zirconia ceramic for orthopaedic and dental devices,” in: R. Pignatello (ed.), Biomaterials Applications for Nanomedizine (2011), Pt. 458, pp. 299 – 308.

  13. L. I. Podzorova, L. I. Shvorneva, A. A. Il’icheva, et al., “Microstructure and phase composition of the composites [ZrO2–CeO2]–[Al2O3] in the presence of modifiers MgO andY2O3,” Neorg. Mater., 49(4), 389 – 394 (2013).

    Article  Google Scholar 

  14. L. L. Podzorova, A. A. Il’icheva, O. I. Pen’kova, et al., “Composites modified Al2O3-system (Ce–TZP) as a medical material,” Persp. Mater., No. 1, 32 – 38 (2016).

  15. L. I. Podzorova. A. A. Il’icheva, O. I. Pen’kova, and L. I. Shvorneva, Composite Ceramic Material and Method of Obtaining It, RF Patent No. 2569113 C04B35/488 [in Russian], published October 26, 2015.

  16. D. N. Poluboyarinov and R. J. Popil’skii (eds.), Laboratory Manual on Technology of Ceramics and Refractories [in Russian], Stroiizdat, Moscow (1972), pp. 106 – 109.

  17. V. S. Bakunov and E. S. Lukin, “Particularities of the technology for producing high-density technical ceramics. Activity of oxide powders during sintering,” Steklo Keram., No. 11, 21 – 25 (2008); V. S. Bakunov and E. S. Lukin, “Particularities of the technology for producing high-density technical ceramics. Activity of oxide powders during sintering,” Glass Ceram., 65(11 – 12), 402 – 406 (2008).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. I. Podzorova.

Additional information

Translated from Steklo i Keramika, No. 6, pp. 16 – 20, June, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Podzorova, L.I., Il’icheva, A.A., Pen’kova, O.I. et al. Dispersion Hardening of Composites in the System Aluminum Oxide and Cerium Cation Stabilized Tetragonal Zirconium Dioxide. Glass Ceram 74, 204–208 (2017). https://doi.org/10.1007/s10717-017-9962-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10717-017-9962-8

Key words

Navigation