Skip to main content
Log in

Late-time constraints on modified Gauss-Bonnet cosmology

  • Research
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

In this paper, we consider a gravitational action containing a combination of the Ricci scalar, R, and the topological Gauss-Bonnet term, G. Specifically, we study the cosmological features of a particular class of modified gravity theories selected by symmetry considerations, namely the \(f(R,G)= R^n G^{1-n}\) model. In the context of a spatially flat, homogeneous and isotropic background, we show that the currently observed acceleration of the Universe can be addressed through geometry, hence avoiding de facto the shortcomings of the cosmological constant. We thus present a strategy to numerically solve the Friedmann equations in presence of pressureless matter and obtain the redshift behavior of the Hubble expansion rate. Then, to check the viability of the model, we place constraints on the free parameters of the theory by means of a Bayesian Monte Carlo method applied to late-time cosmic observations. Our results show that the f(RG) model is capable of mimicking the low-redshift behavior of the standard \(\Lambda \)CDM model. Finally, we investigate the energy conditions and show that, under suitable choices for the values of the cosmographic parameters, they are all violated when considering the mean value of n obtained from our analysis, as occurs in the case of a dark fluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The manuscript does not contain any material from third parties; all of the material is owned by the authors and/or no permissions are required.

Notes

  1. In order to heal the cosmological constant problem, a recent study has suggested a mechanism for removing the vacuum energy contribution by means of a phase-transition during the inflationary era [8].

  2. In this paper, we consider units where \(8\pi G_N=c=\hbar =1\).

  3. We here follow the standard recipe, according to which the scale is normalized to the unity at the present time.

  4. The redshift z is related to the scale factor through \(z= a^{-1}-1\).

  5. We refer the reader to [83] for the details on the parametrization of the SN distance modulus in terms of the light-curve coefficients and the host-galaxy corrections.

  6. See also references therein.

  7. The subscript “0" refers to quantities evaluated at \(z=0\), corresponding to the present time.

References

  1. Riess, A.G., et al.: Astron. J. 116, 1009 (1998)

    Article  ADS  Google Scholar 

  2. Perlmutter, S., et al.: Astrophys. J. 517, 565 (1999)

    Article  ADS  Google Scholar 

  3. Peebles, P.J.E., Ratra, B.: Rev. Mod. Phys. 75, 559 (2003)

    Article  ADS  Google Scholar 

  4. Copeland, E., Sani, M., Tsujikawa, S.: Int. J. Mod. Phys. D 15, 1753 (2006)

    Article  ADS  Google Scholar 

  5. Weinberg, S.: Rev. Mod. Phys. 61, 1 (1989)

    Article  ADS  Google Scholar 

  6. Padmanabhan, T.: Phys. Rept. 380, 235 (2003)

    Article  ADS  Google Scholar 

  7. Carroll, S.M.: Living Rev. Rel. 4, 1 (2001)

    Article  Google Scholar 

  8. D’Agostino, R., Luongo, O., Muccino, M.: Class. Quant. Grav. 39, 195014 (2022)

    Article  ADS  Google Scholar 

  9. Ratra, B., Peebles, P.J.E.: Phys. Rev. D 37, 3406 (1988)

    Article  ADS  Google Scholar 

  10. Caldwell, R.R., Dave, R., Steinhardt, P.J.: Phys. Rev. Lett. 80, 1582 (1998)

    Article  ADS  Google Scholar 

  11. Zlatev, I., Wang, L., Steinhardt, P.J.: Phys. Rev. Lett. 82, 896 (1999)

    Article  ADS  Google Scholar 

  12. Sahni, V., Wang, L.M.: Phys. Rev. D 62, 103517 (2000)

    Article  ADS  Google Scholar 

  13. Scherrer, R.J.: Phys. Rev. Lett. 93, 011301 (2004)

    Article  ADS  Google Scholar 

  14. Capozziello, S., Nojiri, S., Odintsov, S.D.: Phys. Lett. B 632, 597 (2006)

    Article  ADS  Google Scholar 

  15. Capozziello, S., D’Agostino, R., Luongo, O.: Phys. Dark Univ. 20, 1 (2018)

    Article  Google Scholar 

  16. Capozziello, S., D’Agostino, R., Giambò, R., Luongo, O.: Phys. Rev. D 99, 023532 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  17. Boshkayev, K., D’Agostino, R., Luongo, O.: Eur. Phys. J. C 79, 332 (2019)

    Article  ADS  Google Scholar 

  18. D’Agostino, R., Luongo, O.: Phys. Lett. B 829, 137070 (2022)

    Article  Google Scholar 

  19. Clifton, T., Ferreira, P.G., Padilla, A., Skordis, C.: Phys. Rept. 513, 1–189 (2012)

    Article  ADS  Google Scholar 

  20. Nojiri, S., Odintsov, S.D., Oikonomou, V.K.: Phys. Rept. 692, 1 (2017)

    Article  ADS  Google Scholar 

  21. Carroll, S.M., Duvvuri, V., Trodden, M., Turner, M.S.: Phys. Rev. D 70, 043528 (2004)

    Article  ADS  Google Scholar 

  22. Starobisnky, A.A.: JETP Lett. 86, 157 (2007)

    Article  ADS  Google Scholar 

  23. Nojiri, S., Odintsov, S.: Phys. Rept. 505, 59 (2011)

    Article  ADS  Google Scholar 

  24. Joyce, A., Jain, B., Khoury, J., Trodden, M.: Phys. Rept. 568, 1–98 (2015)

    Article  ADS  Google Scholar 

  25. Koyama, K.: Rept. Prog. Phys. 79(4), 046902 (2016)

    Article  ADS  Google Scholar 

  26. Amendola, L., Polarski, D., Tsujikawa, S.: Phys. Rev. Lett. 98, 131302 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  27. Sotiriou, T.P., Faraoni, V.: Rev. Mod. Phys. 82, 451 (2010)

    Article  ADS  Google Scholar 

  28. Dolgov, A.D., Kawasaki, M.: Phys. Lett. B 573, 1–4 (2003)

    Article  ADS  Google Scholar 

  29. Faraoni, V.: Phys. Rev. D 74, 104017 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  30. De Felice, A., Tsujikawa, S.: Living Rev. Rel. 13, 3 (2010)

    Article  Google Scholar 

  31. Capozziello, S., De Laurentis, M.: Phys. Rept. 509, 167 (2011)

    Article  ADS  Google Scholar 

  32. Nojiri, S., Odintsov, S.D.: Phys. Lett. B 631, 1 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  33. Li, B., Barrow, J.D., Mota, D.F.: Phys. Rev. D 76, 044027 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  34. Elizalde, E., Myrzakulov, R., Obukhov, V.V., Saez-Gomez, D.: Class. Quant. Grav. 27, 095007 (2010)

    Article  ADS  Google Scholar 

  35. De Felice, A., Tsujikawa, S.: Phys. Rev. D 80, 063516 (2009)

    Article  ADS  Google Scholar 

  36. Oikonomou, V.K., Katzanis, P.D., Papadimitriou, I.C.: Class. Quant. Grav. 39(9), 095008 (2022)

    Article  ADS  Google Scholar 

  37. Oikonomou, V.K.: Class. Quant. Grav. 38(19), 195025 (2021)

    Article  ADS  Google Scholar 

  38. Odintsov, S.D., Oikonomou, V.K., Fronimos, F.P., Fasoulakos, K.V.: Phys. Rev. D 102(10), 104042 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  39. Bajardi, F., Vernieri, D., Capozziello, S.: J. Cosm. Astrop. Phys. 11, 057 (2021)

    Article  ADS  Google Scholar 

  40. Lovelock, D.: J. Math. Phys. 12, 498 (1971)

    Article  ADS  Google Scholar 

  41. Mardones, A., Zanelli, J.: Class. Quant. Grav. 8, 1545 (1991)

    Article  ADS  Google Scholar 

  42. Achucarro, A., Townsend, P.K.: Phys. Lett. B 180, 89 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  43. Gomez, F., Minning, P., Salgado, P.: Phys. Rev. D 84, 063506 (2011)

    Article  ADS  Google Scholar 

  44. Leigh, R.G.: Mod. Phys. Lett. A 4, 2767 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  45. Tseytlin, A.A.: Nucl. Phys. B 501, 41 (1997)

    Article  ADS  Google Scholar 

  46. Marathe, K.B., Martucci, G.: J. Geom. Phys. 6, 1–106 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  47. Bajardi, F., Capozziello, S.: Eur. Phys. J. C 80, 704 (2020)

    Article  ADS  Google Scholar 

  48. De Felice, A., Gerard, J.M., Suyama, T.: Phys. Rev. D 82, 063526 (2010)

    Article  ADS  Google Scholar 

  49. De Felice, A., Suyama, T., Tanaka, T.: Phys. Rev. D 83, 104035 (2011)

    Article  ADS  Google Scholar 

  50. Sadjadi, H.M.: EPL 92, 50014 (2010)

    Article  Google Scholar 

  51. Makarenko, A.N., Obukhov, V.V., Kirnos, I.V.: Astrophys. Space Sci. 343, 481 (2013)

    Article  ADS  Google Scholar 

  52. De Laurentis, M., Lopez-Revelles, A.J.: Int. J. Geom. Meth. Mod. Phys. 11, 1450082 (2014)

    Article  Google Scholar 

  53. Elizalde, E., Odintsov, S.D., Oikonomou, V.K., Paul, T.: Nucl. Phys. B 954, 114984 (2020)

    Article  Google Scholar 

  54. Mustafa, G., Shamir, M.F., Tie-Cheng, X.: Phys. Rev. D 101, 104013 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  55. de Martino, I., De Laurentis, M., Capozziello, S.: Phys. Rev. D 102, 063508 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  56. Nojiri, S., Odintsov, S.D., Paul, T.: Phys. Dark Univ. 35, 100984 (2022)

    Article  Google Scholar 

  57. Akbarieh, A.R., Kazempour, S., Shao, L.: Phys. Rev. D 103, 123518 (2021)

    Article  ADS  Google Scholar 

  58. Carroll, S.M., De Felice, A., Duvvuri, V., Easson, D.A., Trodden, M., Turner, M.S.: Phys. Rev. D 71, 063513 (2005)

    Article  ADS  Google Scholar 

  59. Bogdanos, C., Capozziello, S., De Laurentis, M., Nesseris, S.: Astropart. Phys. 34, 236 (2010)

    Article  ADS  Google Scholar 

  60. De Felice, A., Suyama, T.: J. Cosm. Astrop. Phys. 06, 034 (2009)

    Article  Google Scholar 

  61. Astashenok, A.V., Odintsov, S.D., Oikonomou, V.K.: Class. Quant. Grav. 32, 185007 (2015)

    Article  ADS  Google Scholar 

  62. Nojiri, S., Odintsov, S.D., Oikonomou, V.K.: Phys. Rev. D 99, 044050 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  63. Acunzo, A., Bajardi, F., Capozziello, S.: Phys. Lett. B 826, 136907 (2022)

    Article  Google Scholar 

  64. Bajardi, F., Capozziello, S.: Int. J. Geom. Meth. Mod. Phys. 18, 2140002 (2021)

    Article  Google Scholar 

  65. Capozziello, S., De Laurentis, M., Odintsov, S.D.: Mod. Phys. Lett. A 29, 1450164 (2014)

    Article  ADS  Google Scholar 

  66. Camci, U.: Symmetry 10, 719 (2018)

    Article  ADS  Google Scholar 

  67. Bajardi, F., Capozziello, S.: Int. J. Mod. Phys. D 29, 2030015 (2020)

    Article  ADS  Google Scholar 

  68. Urban, Z., Bajardi, F., Capozziello, S.: Int. J. Geom. Meth. Mod. Phys. 17, 2050215 (2020)

    Article  Google Scholar 

  69. Dialektopoulos, K.F., Capozziello, S.: Int. J. Geom. Meth. Mod. Phys. 15, 1840007 (2018)

    Article  Google Scholar 

  70. Bajardi, F., Capozziello, S.: Cambridge University Press (2022). https://doi.org/10.1017/9781009208727

  71. Weinberg, S.: Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. Wiley, New York (1972)

    Google Scholar 

  72. Visser, M.: Gen. Rel. Grav. 37, 1541 (2005)

    Article  ADS  Google Scholar 

  73. Capozziello, S., D’Agostino, R., Luongo, O.: Mon. Not. Roy. Astron. Soc. 476, 3924 (2018)

    Article  ADS  Google Scholar 

  74. Santos Da Costa, S., Roig, F.V., Alcaniz, J.S., Capozziello, S., De Laurentis, M., Benetti, M.: Class. Quant. Grav. 35, 075013 (2018)

    Article  ADS  Google Scholar 

  75. Bamba, K., Odintsov, S.D., Sebastiani, L., Zerbini, S.: Eur. Phys. J. C 67, 295 (2010)

    Article  ADS  Google Scholar 

  76. De Laurentis, M., Paolella, M., Capozziello, S.: Phys. Rev. D 91, 083531 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  77. Bahamonde, S., Dialektopoulos, K., Camci, U.: Symmetry 12, 68 (2020)

    Article  ADS  Google Scholar 

  78. Scolnic, D.M., et al.: Astrophys. J. 859, 101 (2018)

    Article  ADS  Google Scholar 

  79. Capozziello, S., D’Agostino, R., Luongo, O.: Phys. Dark Univ. 20, 1 (2018)

    Article  Google Scholar 

  80. D’Agostino, R., Luongo, O.: Phys. Rev. D 98, 124013 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  81. D’Agostino, R.: Phys. Rev. D 99, 103524 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  82. Guy, J., et al.: Astron. Astrophys. 466, 11 (2007)

    Article  ADS  Google Scholar 

  83. Betoule, M., et al.: Astron. Astrophys. 568, A22 (2014)

    Article  Google Scholar 

  84. Riess, A.G., et al.: Astrophys. J. 853, 126 (2018)

    Article  ADS  Google Scholar 

  85. D’Agostino, R., Nunes, R.C.: Phys. Rev. D 106, 124053 (2022)

    Article  ADS  Google Scholar 

  86. Jimenez, R., Loeb, A.: Astrophys. J. 573, 37 (2002)

    Article  ADS  Google Scholar 

  87. Hastings, W.K.: Biometrika 57, 97 (1970)

    Article  MathSciNet  Google Scholar 

  88. D’Agostino, R., Nunes, R.C.: Phys. Rev. D 101, 103505 (2020)

    Article  ADS  Google Scholar 

  89. Riess, A.G., et al.: Astrophys. J. Lett. 934, L7 (2022)

    Article  ADS  Google Scholar 

  90. Aghanim, N., et al.: Astron. Astrophysics 641, A6 (2020)

    Google Scholar 

  91. De Felice, A., Mota, D.F., Tsujikawa, S.: Phys. Rev. D 81, 023532 (2010)

    Article  ADS  Google Scholar 

  92. Capozziello, S., Lobo, F.S.N., Mimoso, J.P.: Phys. Rev. D 91, 124019 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  93. Capozziello, S., D’Agostino, R., Luongo, O.: Int. J. Mod. Phys. D 28, 1930016 (2019)

    Article  ADS  Google Scholar 

  94. Capozziello, S., D’Agostino, R., Luongo, O.: Mon. Not. Roy. Astron. Soc. 494, 2576 (2020)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of Istituto Nazionale di Fisica Nucleare (INFN), iniziative specifiche GINGER and QGSKY. The authors would also like to thank Salvatore Capozziello for useful discussions.

Funding

The authors received no financial support for the research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Contributions

The authors equally contributed to the conceptualization, analysis and writing of the manuscript.

Corresponding author

Correspondence to Francesco Bajardi.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests as defined by Springer, or other interests that might be perceived to influence the results and/or discussion reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A Useful relations

For the sake of completeness, we here report some useful relations for determining the cosmological dynamics in the case of \(f(R,G) = R^n G^m\) gravity. Specifically, starting from the definitions given in Eqs. (14) and (15), the time derivatives of the Ricci scalar and the Gauss-Bonnet term take the form

$$\begin{aligned} \dot{R}&= 6(4H\dot{H}+\ddot{H})\,, \end{aligned}$$
(A1)
$$\begin{aligned} \dot{G}&=24H(4H^2\dot{H}+2\dot{H}^2+H\ddot{H}) \,. \end{aligned}$$
(A2)

Moreover, the time derivatives of the functions appearing in Eqs. (12) and (13) can be expressed in terms of the above equations and the derivatives with respect to R and G as follows:

$$\begin{aligned} \dot{f_R}=&\ \dot{R} f_{RR}+\dot{G} f_{RG}\,, \end{aligned}$$
(A3)
$$\begin{aligned} \dot{f_G}=&\ \dot{G} f_{GG} + \dot{R} f_{RG}\,, \end{aligned}$$
(A4)
$$\begin{aligned} \ddot{f_R}=&\ \ddot{R}f_{RR}+\ddot{G}f_{RG}+\dot{R}^2 f_{RRR}+\dot{G}^2 f_{RGG}+2\dot{R}\dot{G}f_{RRG}\,, \end{aligned}$$
(A5)
$$\begin{aligned} \ddot{f_G}=&\ \ddot{G} f_{GG} +\ddot{R} f_{RG}+\dot{G}^2 f_{GGG}+\dot{R}^2 f_{RRG}+2\dot{R}\dot{G}f_{RGG}\,. \end{aligned}$$
(A6)

Appendix B Effective dark energy pressure

In the case of \(f(R,G) = R^n G^m\) gravity models, the dark energy pressure (13) can be written in the compact form (25), where the explicit expressions of the coefficients \(c_k(j,s;n,m)\) are

$$\begin{aligned} c_0=&\ m \left( -m ^2+3 m -2\right) j^2\,, \end{aligned}$$
(B1)
$$\begin{aligned} c_1=&\ m (m -1) \left[ 3 j^2 (n +m -2)-j (4 n +6 m -6)+s\right] , \end{aligned}$$
(B2)
$$\begin{aligned} c_2=&\ m \left\{ 2 j \left[ 9 n m +n (4 n -11)+7 m ^2-16 m +9\right] \right. \nonumber \\&-(2 n +3 m -3) (2 n +3 m +s-2)\nonumber \\&\left. -3 j^2 (n +m-2) (n +m -1)\right\} , \end{aligned}$$
(B3)
$$\begin{aligned} c_3=&\ (m -1) \left[ m ^2 \left( j^2-6 j+15\right) -m \left( 2 j^2-18 j-3 s+15\right) \right. \nonumber \\&\left. +3\right] +n ^2 \left[ 12 m +3 (m -1) j^2-2 (5 m -7) j+s-10\right] \nonumber \\&+(j-2)^2 n^3+n \left[ 19 m ^2-25 m +\left( 3 m ^2-6 m +2\right) j^2\right. \nonumber \\&\left. -2 \left( 8 m ^2-13 m +5\right) j+4 m s-s+3\right] , \end{aligned}$$
(B4)
$$\begin{aligned} c_4=&\ n \left\{ 3 m -2 \left[ m (3 m +2) j+j+m (s-3 m )\right] +s+13\right\} \nonumber \\&+2 n ^3 (2-j)-n ^2 \left[ -5 m +2 (m -2) j+s+8\right] \nonumber \\&+(m -1) \left\{ 9+m \left[ 5 m -6 (m +1) j-s+11\right] \right\} , \end{aligned}$$
(B5)
$$\begin{aligned} c_5=&\ n ^2 \left[ m (4 j-9)-8\right] +(m -1) \left[ m ^2 (4 j-15)-3 m-9\right] \nonumber \\&+ n \left( m ^2 (8 j-17)+m (6-4 j)-2\right) +n^3\,, \end{aligned}$$
(B6)
$$\begin{aligned} c_6=&\ 4n m (2-n) -(n -4) n +3 m ^2-3\,, \end{aligned}$$
(B7)
$$\begin{aligned} c_7=&\ 2 m (2 m -1) (n +m -1) \,. \end{aligned}$$
(B8)

Appendix C Solutions to vacuum field equations

Making use of the relations reported in 1, it is possible to find analytic solutions for the scale factor of \(f(R,G)=R^n G^m\) gravity in vacuum. In particular, it turns out that the theory under consideration admits two different sets of solutions. The first one is a time power-law scale factor of the form \(a(t) = a_0 t^\ell \), with

$$\begin{aligned} \ell= & {} \left[ \frac{1}{{2 (2 m+n-2)}}\right] \Big \{-8 m^2-8 m n+11 m-2 n^2 \nonumber \\{} & {} +4 n-3 \pm \Big [\Big (8 m^2+8 m n-11 m+2 n^2 -4 n+3\Big )^2 \nonumber \\{} & {} +4 (2 m+n-2) \Big (4 m^2+6 m n-5 m +2 n^2-3 n+1 \Big ) \Big ]^{\frac{1}{2}} \Big \}. \end{aligned}$$
(C1)

Setting \(m = 1-n\), the solution takes the form \(a(t) = a_0 t^{2n-1}\), as written in Eq. (30). Another solution occurs when considering exponential scale factors of the form \(a(t) = a_0 e^{s\, t}\), with s being a real number. However, in order for this scale factor to be the solution to the field equation, we must also have \(m=1-n/2\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bajardi, F., D’Agostino, R. Late-time constraints on modified Gauss-Bonnet cosmology. Gen Relativ Gravit 55, 49 (2023). https://doi.org/10.1007/s10714-023-03092-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-023-03092-w

Keywords

Navigation