Skip to main content
Log in

Hawking radiation via tunneling from a d-dimensional black hole in Gauss–Bonnet gravity

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We extend the Parikh–Wilczek method from Einstein gravity spacetime to Gauss–Bonnet modified gravity and study the tunneling radiation of particles across the event horizon of a d-dimensional Gauss–Bonnet Anti de-Sitter black hole. The emission rate of a particle is calculated. It is shown that the emission rate of massive particles takes the same functional form as that of massless particles although that their motion equations tunneling across the horizon are different. It is also shown that the emission spectrum deviates from the pure thermal spectrum but is consistent with an underlying unitary theory. In addition, significant but interesting phenomenon is demonstrated when Gauss–Bonnet term is present. The expression of the emission rate for a black hole in Gauss–Bonnet gravity differs from that for a black hole in Einstein gravity. After adopting the conventional tunneling rate, we obtain the expression of the entropy of the Gauss–Bonnet black hole, which is in accordance with the early results but does not obey the area law. So the research of tunneling radiation in this paper may serve as a new perspective of understanding the thermodynamics of black holes in Gauss–Bonnet gravity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hawking, S.W.: Commun. Math. Phys. 43, 199 (1975)

    Article  ADS  Google Scholar 

  2. Gibbons, G.W., Hawking, S.W.: Phys. Rev. D 15, 2752 (1997)

    Article  ADS  Google Scholar 

  3. Zhang, J.Y., Zhao, Z.: Acta Phys. Sin. 51, 2399 (2002). (in Chinese)

    Google Scholar 

  4. Liu, W.B., Zhao, Z.: Chin. Phys. Lett. 18, 310 (2001)

    Article  ADS  Google Scholar 

  5. Yang, S.Z., Lin, L.B.: Chin. Phys. 11, 619 (2002)

    Article  ADS  Google Scholar 

  6. Jing, J.L.: Chin. Phys. Lett. 20, 459 (2003)

    Article  ADS  Google Scholar 

  7. Kraus, P., Wilczek, F.: Nucl. Phys. B 433, 403 (1995)

    Article  ADS  Google Scholar 

  8. Parikh, M.K., Wilczek, F.: Phys. Rev. Lett. 85, 5042 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  9. Parikh, M.K.: Int. J. Mod. Phys. D 13, 2351 (2004)

    Article  ADS  Google Scholar 

  10. Zhang, J.Y., Zhao, Z.: J. High Energy Phys. 10, 55 (2005)

    Article  ADS  Google Scholar 

  11. Zhang, J.Y., Zhao, Z.: Nucl. Phys. B 725, 173 (2005)

    Article  ADS  Google Scholar 

  12. Jiang, Q.Q., Yang, S.Z., Li, H.L.: Chin. Phys. 14, 1736 (2005)

    Article  ADS  Google Scholar 

  13. Han, Y.W., Yang, S.Z.: Chin. Phys. Lett. 22, 2769 (2005)

    Article  ADS  Google Scholar 

  14. Ren, J., Zhao, Z., Gao, C.J.: Chin. Phys. Lett. 22, 2489 (2005)

    Article  ADS  Google Scholar 

  15. Zhang, J.Y., Zhao, Z.: Phys. Lett. B 618, 14 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  16. Zhang, J.Y., Zhao, Z.: Mod. Phys. Lett. A 20, 1673 (2005)

    Article  ADS  Google Scholar 

  17. Yang, S.Z.: Chin. Phys. Lett. 22, 2492 (2005)

    Article  ADS  Google Scholar 

  18. Li, G.Q.: Europhys. Lett. 76, 203 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  19. Zhang, J.Y., Fan, J.H.: Phys. Lett. B 648, 133 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  20. Li, G.Q.: Europhys. Lett 75, 216 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  21. Li, G.Q.: J. Phys. A: Math. Gen. 39, 11889 (2006)

    Article  ADS  Google Scholar 

  22. Li, G.Q.: Mod. Phys. Lett. A 22, 209 (2007)

    Article  ADS  Google Scholar 

  23. Boulware, D.G., Deser, S.: Phys. Rev. Lett. 55, 2656 (1985)

    Article  ADS  Google Scholar 

  24. Zwiebach, B.: Phys. Lett. B 156, 315 (1985)

    Article  ADS  Google Scholar 

  25. Nepomechie, R.I.: Phys. Rev. D 32, 3201 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  26. Wiltshire, D.L.: Phys. Lett. B 169, 36 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  27. Cvetic, M., Nojiri, S.I., Odintsov, S.D.: Nucl. Phys. B 628, 295 (2002). arXiv:hep-th/0112045

    Article  ADS  Google Scholar 

  28. Cai, R.G.: Phys. Rev. D 65, 084014 (2002). arXiv:hep-th/0109133

    Article  ADS  MathSciNet  Google Scholar 

  29. Cai, R.G., Cao, L.M., Li, L., Yang, R.Q.: J. High Energy Phys. 09, 005 (2013)

    Article  ADS  Google Scholar 

  30. Mo, J.X., Li, G.Q.: Phys. Rev. D 92, 024055 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  31. Landau, L.D., Lifshitz, E.M.: The Classical Theory of Field. Pergamon Press, London (1975)

    MATH  Google Scholar 

  32. Myers, R.C., Simon, J.Z.: Phys. Rev. D 38, 2434 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  33. Kanti, P., Tamvakis, K.: Phys. Lett. B 392, 30 (1997). arXiv:hep-th/9609003

    Article  ADS  MathSciNet  Google Scholar 

  34. Grain, J., Barrau, A., Kanti, P.: Phys. Rev. D 72, 104016 (2005). arXiv:hep-th/0509128

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gu-Qiang Li.

Additional information

Project supported by Guangdong Natural Science Foundation (Grant Nos. 2016A030307051 and 2016A030310363).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, GQ., Mo, JX. Hawking radiation via tunneling from a d-dimensional black hole in Gauss–Bonnet gravity. Gen Relativ Gravit 49, 57 (2017). https://doi.org/10.1007/s10714-017-2223-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-017-2223-x

Keywords

Navigation