Skip to main content
Log in

Dynamics of a test particle around two massive bodies in decay circular orbits

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

A circular restricted three-body problem describes the motion of a test particle around two massive bodies in circular orbits. In this system, orbital decay caused by a gravitational radiation reaction between the two primary bodies is considered but the direct effect of gravitational radiation on the test particle is neglected. We adopt distance- and time-scale transformations to Newtonian problems so that systems without orbital decay will not depend on separation between the primaries but systems with orbital decay will depend on this separation. If a regular or chaotic orbit is given in a Newtonian system, the starting separation of the primaries varies according to the corresponding decay system. Thus, insights into the chaotic behaviour of a third body in a decay case are provided. For a large initial separation between the primaries, the chaos that exists in a Newtonian problem may be retained for a long enough time scale of dissipative evolution before the primaries coalesce. The final state of a third body is escape attributed to orbital decay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Here are details of construction of the Poincaré section. At first, let us take a point \(P_1(X_1,Y_1)\) with \(Y_1<0\) at an \(i\)th step and another point \(P_2(X_2,Y_2)\) with \(Y_2>0\) at an \((i+1)\)th step. Then a linearly interpolating function of \(X\) on \(Y\) can be given by means of the two points \(P_1\) and \(P_2\). Finally, we obtain \(X\) from the function with \(Y=0\). In this similar way, we also have \(X'\) when \(X\) is replaced with \(X'\). Therefore, there is the point \((X,X')\) on the surface of section. Repeat the procedure as needed until many points can be plotted.

  2. The formal definition of the Lyapunov exponent requires computation of the maximum characteristic exponent of the Jacobian matrix in phase space; therefore, the distance norm is usually specified in a manner similar to that for the phase space tangent vector. However, the definition of distance in spatial coordinates is better than that in phase-space coordinates because the difficulty in different dimensions can be avoided and the construction of an invariant distance is easy, as claimed in [47]. In addition, \(d(0)\) in the variational method is usually taken as 1.

  3. In this case, computation of the Lyapunov exponent does not end until \(\tau =10^{7}\).

References

  1. Wu, X., Zhang, H.: Astrophys. J. 652, 1466 (2006)

    Article  ADS  Google Scholar 

  2. Semerák, O., Suková, P.: Mon. Not. R. Astron. Soc. 404, 545 (2010)

    Article  ADS  Google Scholar 

  3. Semerák, O., Suková, P.: Mon. Not. R. Astron. Soc. 425, 2455 (2012)

    Article  ADS  Google Scholar 

  4. Wang, Y., Wu, X.: Chin. Phys. B 21, 050504 (2012)

    Article  ADS  Google Scholar 

  5. Wang, Y., Wu, X., Sun, W.: Commun. Theor. Phys. 60, 433 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  6. Suková, P., Semerák, O.: Mon. Not. R. Astron. Soc. 436, 978 (2013)

    Article  ADS  Google Scholar 

  7. Levin, J.: Phys. Rev. Lett. 84, 3515 (2000)

    Article  ADS  Google Scholar 

  8. Cornish, N.J.: Phys. Rev. Lett. 85, 3980 (2000)

    Article  ADS  Google Scholar 

  9. Cornish, N.J.: Phys. Rev. D 84, 084011 (2001)

    Article  ADS  Google Scholar 

  10. Apostolatos, T.A., Lukes-Gerakopoulos, G., Contopoulos, G.: Phys. Rev. Lett. 103, 111101 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  11. Kiuchi, K., Koyama, H., Maeda, K.I.: Phys. Rev. D 76, 024018 (2007)

    Article  ADS  Google Scholar 

  12. Kiuchi, K., Maeda, K.I.: Phys. Rev. D 70, 064036 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  13. Wu, X., Xie, Y.: Phys. Rev. D 77, 103012 (2008)

    Article  ADS  Google Scholar 

  14. Zhong, S.Y., Wu, X., Liu, S.Q., Deng, X.F.: Phys. Rev. D 82, 124040 (2010)

    Article  ADS  Google Scholar 

  15. Seyrich, J.: Phys. Rev. D 87, 084064 (2013)

    Article  ADS  Google Scholar 

  16. Wang, Y.Z., Wu, X., Zhong, S.Y.: Acta Phys. Sin. 61, 160401 (2012)

    Google Scholar 

  17. Huang, G., Ni, X., Wu, X.: Eur. Phys. J. C. 74, 3012 (2014)

    Article  ADS  Google Scholar 

  18. Froeschlé, C., Lega, E., Gonczi, R.: Celest. Mech. Dyn. Astron. 67, 41 (1997)

    Article  MATH  ADS  Google Scholar 

  19. Wu, X., Huang, T.Y., Zhang, H.: Phys. Rev. D 74, 083001 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  20. Cornish, N.J., Levin, J.: Phys. Rev. D 68, 024004 (2003)

    Article  ADS  Google Scholar 

  21. Levin, J.: Phys. Rev. D 67, 044013 (2003)

    Article  ADS  Google Scholar 

  22. Wu, X., Xie, Y.: Phys. Rev. D 76, 124004 (2007)

    Article  ADS  Google Scholar 

  23. Cornish, N.J., Levin, J.: Class. Quantum Grav. 20, 1649 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  24. Hartl, M.D., Buonanno, A.: Phys. Rev. D 71, 024027 (2005)

    Article  ADS  Google Scholar 

  25. Mei, L., Ju, M., Wu, X., Liu, S.: Mon. Not. R. Astron. Soc. 435, 2246 (2013)

    Article  ADS  Google Scholar 

  26. Kokubun, F.: Phys. Rev. D 57, 2610 (1998)

    Article  ADS  Google Scholar 

  27. Suzuki, S., Maeda, K.I.: Phys. Rev. D 61, 024005 (1999)

    Article  ADS  Google Scholar 

  28. Chiba, T., Imai, T., Asada, H.: Mon. Not. R. Astron. Soc. 377, 269 (2007)

    Article  ADS  Google Scholar 

  29. Wang, Y., Wu, X.: Commun. Theor. Phys. 56, 1045 (2011)

    Article  MATH  ADS  Google Scholar 

  30. Valtonen, M.J., Mikkola, M., Pietilä, H.: Mon. Not. R. Astron. Soc. 273, 751 (1995)

    ADS  Google Scholar 

  31. Gültekin, K., Miller, M. C., Hamilton, D. P.: The proceedings of The Astrophysics of Gravitational Wave Sources, College Park, Maryland, 24–26 April, pp 135–140 (2003)

  32. Iwasawa, M., Funato, Y., Makino, J.: Astrophys. J. 651, 1059 (2006)

    Article  ADS  Google Scholar 

  33. Hannam, M., Husa, S., Brügmann, B., Gopakumar, A.: Phys. Rev. D 78, 104007 (2008)

    Article  ADS  Google Scholar 

  34. Naoz, S., Kocsis, B., Loeb, A., Yunes, N.: Astrophs. J. 773, 187 (2013)

  35. Battista, E., Esposito, G.: Phys. Rev. D 89, 084030 (2014)

    Article  ADS  Google Scholar 

  36. Battista, E., Esposito, G.: 2014. arXiv:1407.3545 [gr-qc]

  37. Wardell, Z.E.: Mon. Not. R. Astron. Soc. 334, 149 (2002)

    Article  ADS  Google Scholar 

  38. Wardell, Z.E.: Mon. Not. R. Astron. Soc. 341, 423 (2003)

    Article  ADS  Google Scholar 

  39. Gültekin, K., Miller, M.C., Hamilton, D.P.: Astrophys. J. 640, 156 (2006)

    Article  ADS  Google Scholar 

  40. Galaviz, P.: Phys. Rev. D 84, 104038 (2011)

    Article  ADS  Google Scholar 

  41. Schnittman, J.D.: Astrophys. J. 724, 39 (2010)

    Article  ADS  Google Scholar 

  42. Seto, N., Muto, T.: Phys. Rev. D 81, 103004 (2010)

    Article  ADS  Google Scholar 

  43. Huang, G., Wu, X.: Phys. Rev. D 89, 124034 (2014)

    Article  ADS  Google Scholar 

  44. Peters, P.C.: Phys. Rev. B 136, 1224 (1964)

    Article  ADS  Google Scholar 

  45. Murray, C.D., Dermott, S.F.: Solar System Dynamics. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  46. Tancredi, G., Sánchez, A., Roig, F.: Astron. J. 121, 1171 (2001)

    Article  ADS  Google Scholar 

  47. Wu, X., Huang, T.Y.: Phys. Lett. A 313, 77 (2003)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  48. Tichy, W., Brügmann, B., Campanelli, M., Diener, P.: Phys. Rev. D 67, 064008 (2003)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Acknowledgments

The authors are very grateful to an anonymous referee for a long enough review report in which many good suggestions were given. This research is supported by the Natural Science Foundation of China under Grant Nos. 11173012 and 11178002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, G., Wu, X. Dynamics of a test particle around two massive bodies in decay circular orbits. Gen Relativ Gravit 46, 1798 (2014). https://doi.org/10.1007/s10714-014-1798-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-014-1798-8

Keywords

Navigation