Skip to main content

Advertisement

Log in

A thermodynamic motivation for dark energy

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

It is argued that the discovery of cosmic acceleration could have been anticipated on thermodynamic grounds, namely, the generalized second law and the approach to equilibrium at large scale factor. Therefore, the existence of dark energy—or equivalently, some modified gravity theory—should have been expected. In general, cosmological models that satisfy the above criteria show compatibility with observational data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Peebles P.J.E.: Principles of Physical Cosmology. Princeton University Press, Princeton (1993)

    Google Scholar 

  2. Maddox S.J. et al.: Galaxy correlations on large scales. Mon. Not. R. Astron. Soc. 242, 43 (1990)

    ADS  Google Scholar 

  3. Efstathiou G., Sutherland W.J., Maddox S.J.: The cosmological constant and cold dark matter. Nature 348, 705 (1990)

    Article  ADS  Google Scholar 

  4. Riess A.G. et al.: Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009 (1998)

    Article  ADS  Google Scholar 

  5. Perlmutter S. et al.: Measurements of Omega and Lambda from 42 high-redshift supernovae. Astrophys. J. 517, 565 (1999)

    Article  ADS  Google Scholar 

  6. Durrer R., Maartens R.: Dark energy and dark gravity: theory overview. Gen. Relativ. Gravit. 40, 301 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Perivolaropoulos L.: Accelerating universe: observational status and theoretical implications. AIP Conf. Proc. 848, 698 (2006)

    Article  ADS  Google Scholar 

  8. Frieman J., Turner M., Huterer D.: Dark energy and the accelerating universe. Ann. Rev. Astron. Astrophys. 46, 385 (2008)

    Article  ADS  Google Scholar 

  9. Caldwell R.R., Kamionkowski M.: The physics of cosmic acceleration. Ann. Rev. Nucl. Part. Sci. 59, 397 (2009)

    Article  ADS  Google Scholar 

  10. Amendola L., Tsujikawa S.: Dark Energy. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  11. Callen H.B.: Thermodynamics. Wiley, NY (1960)

    MATH  Google Scholar 

  12. Bak D., Rey S.-J.: Cosmic holography. Class. Quantum Grav. 17, L83 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Cai R.-G.: Thermodynamics of the apparent horizon in brane world scenarios. Progr. Theoret. Phys. Suppl. 172, 100 (2008)

    Article  ADS  MATH  Google Scholar 

  14. Cai R.-G., Cao L.-M., Hu Y.-P.: Hawking radiation of an apparent horizon in a FRW universe. Class. Quantum Grav. 26, 155018 (2009)

    Article  ADS  Google Scholar 

  15. Wang B., Gong Y., Abdalla E.: Thermodynamics of an accelerated expanding universe. Phys. Rev. D. 74, 083520 (2006)

    Article  ADS  Google Scholar 

  16. Lynden-Bell D., Wood R.: Mon. Not. R. Astron. Soc. 138, 495 (1968)

    ADS  Google Scholar 

  17. Lynden-Bell D.: Negative specific heat in astronomy, physics and chemistry. Physica A 263, 293 (1999)

    Article  ADS  Google Scholar 

  18. Jacobson T.: Thermodynamics of spacetime. The Einstein equation of state. Phys. Rev. Lett. 75, 1260 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Padmanbhan T.: Gravity and the thermodynamics of horizons. Phys. Rep. 406, 49 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  20. Padmanabhan T., Gravity: The Inside Story. www.gravityresearchfoundation.org/pdf/awarded/2008/Padmanabhan2008.pdf

  21. Fabris J.C. et al.: Transient cosmic acceleration from interacting fluids. JCAP 04, 008 (2010)

    ADS  Google Scholar 

  22. Bose, N., Majumdar, A.S.: Future deceleration due to effect of event horizon on cosmic back reaction. arXiv:1010.5071v1 [astro-ph.CO]

  23. Calvão M.O., Lima J.A.S., Waga I.: On the thermodynamics of matter creation in cosmology. Phys. Lett. A 162, 223 (1992)

    Article  ADS  Google Scholar 

  24. Pavón D., Wang B.: Le Châtelier-Braun principle and cosmological physics. Gen. Relativ. Gravit. 41, 1 (2009)

    Article  ADS  MATH  Google Scholar 

  25. Komatsu, E., et al.: Seven-year Wilkinson microwave ansotropy probe (WMAP)observations: cosmological interpretation. Astrophys. J. Supplement. arXiv:1001.4538v3 (in press)

  26. Barboza E.M. Jr, Alcaniz J.S.: A parametric model for dark energy. Phys. Lett. B 666, 415 (2008)

    Article  ADS  Google Scholar 

  27. Kamenschchik A.Y., Moschella U., Pasquier V.: An alternative to quintessence. Phys. Lett. B 511, 265 (2001)

    Article  ADS  Google Scholar 

  28. Jackiw, R.: A particle field theorist’s lectures on supersymmetric, non-Abelian fluid mechanics (and d-branes). arXiv:physics/0010042

  29. Zimdahl W., Pavón D.: Interacting holographic dark energy. Class. Quantum Gravity 24, 5461 (2007)

    Article  ADS  MATH  Google Scholar 

  30. Durán I., Pavón D., Zimdahl W.: Observational constraints on a holographic, interacting dark energy model. JCAP 07, 018 (2010)

    ADS  Google Scholar 

  31. Gao C., Wu F., Chen X., Shen Y.G.: Holographic dark energy model from Ricci scalar curvature. Phys. Rev. D 79, 043511 (2009)

    Article  ADS  Google Scholar 

  32. Dvali G., Gabadadze G., Porrati M.: 4D gravity on a brane in 5D Minkowski space. Phys. Lett. B 485, 208 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. Deffayet C.: Cosmology on a brane in Minkowski bulk. Phys. Lett. B 502, 199 (2001)

    Article  ADS  MATH  Google Scholar 

  34. Deffayet C., Dvali G., Gabadadze G.: Accelerated universe from gravity leaking to extra dimensions. Phys. Rev. D 65, 044023 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  35. Freese K., Lewis M.: Cardassian expansion: a model in which the universe is flat, matter dominated and accelerating. Phys. Lett. B 540, 1 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. Bengochea G.R., Ferraro R.: Dark torsion as the cosmic speed-up. Phys. Rev. D 79, 124019 (2009)

    Article  ADS  Google Scholar 

  37. Sheykhi A., Wang B., Cai R.-G.: Deep connection between thermodynamics and gravity in Gauss–Bonet braneworld. Nucl. Phys. B 779, 1 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  38. Deffayet C., Landau S.J., Raus J., Zaldarriaga M., Astier P.: Supernovae, CMB, and gravitational leakage into extra dimensions. Phys. Rev. D 66, 024019 (2002)

    Article  ADS  Google Scholar 

  39. Li, B., Sotirou, T., Barrow, J.D.: f(T) gravity and local Lorentz invariance. arXiv:1010.1041v2

  40. Lyth D.H., Liddle A.R.: The Primordial Density Perturbation. Cambridge University Press, Cambridge (2009)

    MATH  Google Scholar 

  41. Morikawa M.: Oscillating universe: the periodic distribution of galaxies with a scale 128h −1 megaparsecs at the galactic poles. Astrophys. J. 362, L37 (1990)

    Article  ADS  Google Scholar 

  42. Banerjee N., Pavón D., Sen S.: Peridoc distribution of galaxies in generalized scalar tensor theory. Gen. Relativ. Gravit. 35, 851 (2003)

    Article  ADS  MATH  Google Scholar 

  43. Lazkoz R., Salzano V., Sendra I.: Oscillations in the dark energy equation of state: new MCMC lessons. Phys. Lett. B 694, 198 (2010)

    Article  ADS  Google Scholar 

  44. Linder E.V.: Uniqueness of current cosmic acceleration. Phys. Rev. D 82, 063514 (2010)

    Article  ADS  Google Scholar 

  45. Linder E.V., Smith T.L.: Dark before light: testing the cosmic expansion history through the cosmic microwave background. JCAP 04, 001 (2011)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Pavón.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Radicella, N., Pavón, D. A thermodynamic motivation for dark energy. Gen Relativ Gravit 44, 685–702 (2012). https://doi.org/10.1007/s10714-011-1299-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-011-1299-y

Keywords

Navigation